2023-2024学年重庆市九龙坡区数学八上期末质量跟踪监视试题含答案
展开
这是一份2023-2024学年重庆市九龙坡区数学八上期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,用科学记数法表示,4的算术平方根是,下列四个命题中,真命题有,如图,已知,下列实数等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.点在第二、四象限的平分线上,则的坐标为( )
A.B.C.(-2,2)D.
2.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=( )
A.35°B.95°C.85°D.75°
3.为了测量河两岸相对点A、B的距离,小明先在AB的垂线BF上取两点C、D,使CD=BC,再作出BF的垂线DE,使A、C、E在同一条直线上(如图所示),可以证明△EDC≌△ABC,得ED=AB,因此测得ED的长度就是AB的长,判定△EDC≌△ABC的理由是( )
A.SASB.ASAC.SSSD.AAS
4.用科学记数法表示:0.000000109是( )
A.1.09×10﹣7B.0.109×10﹣7C.0.109×10﹣6D.1.09×10﹣6
5.4的算术平方根是( )
A.-2B.2C.D.
6.已知点A和点B,以点A和点B为两个顶点作等腰直角三角形,则一共可作出 ( )
A.3个B.4个C.6个D.7个
7.几个同学包租一辆面包车去旅游,面包车的租价为元,后来又增加了两名同学,租车价不变,若设原来参加旅游的同学共有人,结果每个同学比原来少分摊元车费( )
A.B.C.D.
8.下列四个命题中,真命题有
两条直线被第三条直线所截,内错角相等;
如果和是对顶角,那么;
三角形的一个外角大于任何一个内角;
若,则.
A.1个B.2个C.3个D.4个
9.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A5B5A6的边长为( )
A.6B.16C.32D.64
10.下列实数:,,π,-,,0.1010010001,无理数的个数是( )
A.4个B.3个
C.2个D.1个
二、填空题(每小题3分,共24分)
11.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,点D在BC边上,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则AD=_____cm.
12.比较大小:_________(填“>”或“<”)
13.△ABC中,AB=15,AC=13,高AD=12,则△ABC的面积为______________.
14.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长= cm.
15.分解因式:_____________.
16.如果关于x的方程2无解,则a的值为______.
17.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.
18.在平面直角坐标系中,已知一次函数 y=2x+1 的图象经过 P1(-1,y1),P2(2,y2)两点, 则 y1_____y2(填“>”或“<”或“=”)
三、解答题(共66分)
19.(10分)已知在平面直角坐标系中的位置如图所示,将向右平移5个单位长度,再向下平移3个单位长度得到.(图中每个小方格边长均为1个单位长度)
(1)在图中画出平移后的;
(2)直接写出各顶点的坐标______,______,______.
(3)在轴上找到一点,当取最小值时,点的坐标是______.
20.(6分)如图1是甲、乙两个圆柱形水槽的轴截面示意图.乙槽中有一圆柱形铁块放在其中(圆柱形铁块的下底面完全落在水槽底面上),现将甲槽中的水匀速注人乙槽.甲、乙两个水槽中水的深度与注水时间(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:
(1)图2中折线表示 槽中的水的深度与注水时间的关系,线段表示 槽中的水的深度与注水时间的关系(填“甲”或“乙”),点的纵坐标表示的实际意义是 ;
(2)当时,分别求出和与之间的函数关系式;
(3)注水多长时间时,甲、乙两个水槽中的水深度相同?
(4)若乙槽底面积为平方厘米(壁厚不计) ,求乙槽中铁块的体积.
21.(6分)第7届世界军人运动会于2019年10月18日在武汉开幕,为备战本届军运会,某运动员进行了多次打靶训练,现随机抽取该运动员部分打靶成绩进行整理分析,共分成四组:(优秀)、(良好)、(合格)、(不合格),绘制了如下不完整的统计图:
根据以上信息,解答下列问题:
(1)直接写出本次统计成绩的总次数和图中的值.
(2)求扇形统计图中(合格)所对应圆心角的度数.
(3)请补全条形统计图.
22.(8分)甲、乙两名学生参加数学素质测试(有四项),每项测试成绩采用百分制,成绩如表:
(1)将表格中空缺的数据补充完整,根据表中信息判断哪个学生数学综合素质测试成绩更稳定?请说明理由.
(2)若数与代数、空间与图形、统计与概率、综合与实践的成绩按,计算哪个学生数学综合素质测试成绩更好?请说明理由.
23.(8分) “低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为(米)与时间(分钟)的关系如图.请结合图象,解答下列问题:
(1)填空:______;______;______.
(2)求线段所在直线的解析式.
(3)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离.
24.(8分)如图,在平面直角坐标系中,每个小正方形的边长为1cm,各顶点都在格点上,点A,C的坐标分别为、,结合所给的平面直角坐标系解答下列问题:
(1)画出关于y轴对称的;
(2)画出关于x轴对称的;
(3)若点P为y轴上一动点,则的最小值为______.
25.(10分)面对资源紧缺与环境保护问题,发展电动汽车成为汽车工业发展的主流趋势.我国某著名汽车制造厂开发了一款新式电动汽车,计划一年生产安装辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:名熟练工和名新工人每月可安装辆电动汽车;名熟练工和名新工人每月可安装辆电动汽车.
每名熟练工和新工人每月分别可以安装多少辆电动汽车?
如果工厂招聘名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
在的条件下,工厂给安装电动汽车的每名熟练工每月发元的工资,给每名新工人每月发元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额(元)尽可能的少?
26.(10分)阅读下列一段文字,然后回答下列问题.
已知平面内两点 M(x1,y1)、N(x2,y2),则这两点间的距离可用下列公式计算: MN= .
例如:已知 P(3,1)、Q(1,﹣2),则这两点间的距离 PQ== .
特别地,如果两点 M(x1,y1)、N(x2,y2)所在的直线与坐标轴重合或平行于坐标轴或垂直于坐 标轴,那么这两点间的距离公式可简化为 MN=丨 x1﹣x2 丨或丨 y1﹣y2 丨.
(1)已知 A(1,2)、B(﹣2,﹣3),试求 A、B 两点间的距离;
(2)已知 A、B 在平行于 x 轴的同一条直线上,点 A 的横坐标为 5,点 B 的横坐标为﹣1,
试求 A、B 两 点间的距离;
(3)已知△ABC 的顶点坐标分别为 A(0,4)、B(﹣1,2)、C(4,2),你能判定△ABC 的形状 吗?请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、B
4、A
5、B
6、C
7、C
8、A
9、B
10、C
二、填空题(每小题3分,共24分)
11、1
12、>
13、84或24
14、9
15、.
16、1或1.
17、(,).
18、<
三、解答题(共66分)
19、(1)见解析;(2),,;(3)
20、(1)乙;甲;乙槽中圆柱形铁块的高度是14厘米;(2)y甲=-2x+12,y乙=3x+2;(3)注水2分钟;(4)84cm3
21、(1)本次统计成绩的总次数是20次,;(2)126°;(3)见解析.
22、(1)表格详见解析,甲数学综合素质测试成绩更稳定;(2)乙的成绩更好,理由详见解析.
23、(1)10,15,200;(2);(3) 距图书馆的距离为米
24、(1)见解析;(2)见解析;(3)
25、 (1)每名熟练工和新工人每月分别可以安装、辆电动汽车.工厂有种新工人的招聘方案.①新工人人,熟练工人;②新工人人,熟练工人;③新工人人,熟练工人;④新工人人,熟练工人.当,时(即新工人人,熟练工人),工厂每月支出的工资总额(元)尽可能地少.
26、 (1) (2);(3)△ABC是直角三角形,
学生
数与代数
空间与图形
统计与概率
综合与实践
平均成绩
方差
甲
87
93
91
85
89
______
乙
89
96
91
80
______
______
相关试卷
这是一份重庆市实验中学2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中,是随机事件的是等内容,欢迎下载使用。
这是一份上海延安中学2023-2024学年八上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列各式中为最简二次根式的是,下列实数中,是有理数的是,平面直角坐标系中,点A等内容,欢迎下载使用。
这是一份重庆市綦江区2023-2024学年数学八上期末质量跟踪监视模拟试题含答案,共7页。