搜索
    上传资料 赚现金
    素养拓展25 立体几何中的截面问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      素养拓展25 立体几何中的截面问题(精讲+精练)原卷版.docx
    • 解析
      素养拓展25 立体几何中的截面问题(精讲+精练)解析版.docx
    素养拓展25 立体几何中的截面问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)01
    素养拓展25 立体几何中的截面问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)02
    素养拓展25 立体几何中的截面问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)03
    素养拓展25 立体几何中的截面问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)01
    素养拓展25 立体几何中的截面问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)02
    素养拓展25 立体几何中的截面问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)03
    还剩13页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    素养拓展25 立体几何中的截面问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)

    展开
    这是一份素养拓展25 立体几何中的截面问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含素养拓展25立体几何中的截面问题精讲+精练原卷版docx、素养拓展25立体几何中的截面问题精讲+精练解析版docx等2份试卷配套教学资源,其中试卷共77页, 欢迎下载使用。

    一、知识点梳理
    一、截面问题的理论依据
    (1)确定平面的条件
    ①不在同一平面的三点确定一个平面;②两条平行线确定一个平面
    (2)如果两个不重合的平面有一个公共点,那么它们相交于过此点的一条直线
    (3)如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内
    (4)如果一条直线平行于一个平面,且经过这条直线的平面与这个平面相交,那么这条直线就和交线平行
    (5)如果两个平面平行,第三个平面和它们相交,那么两条交线平行
    二、截面问题的基本思路
    1.定义相关要素
    ①用一个平面去截几何体,此平面与几何体的交集,叫做这个几何体的截面.
    ②此平面与几何体表面的交集(交线)叫做截线.
    ③此平面与几何体的棱(或面)的交集(交点)叫做实截点.
    ④此平面与几何体的棱(或面)的延长线的交点叫做虚截点.
    ⑤截面中能够确定的一部分平面叫做截小面.
    2.作截面的基本逻辑:找截点→连截线→围截面
    3.作截面的具体步骤
    (1)找截点:方式1:延长截小面上的一条直线,与几何体的棱、面(或其延长部分)相交,交点即截点
    方式2:过一截点作另外两截点连线的平行线,交几何体的棱于截点
    (2)连截线:连接同一平面内的两个截点,成截线
    (3)围截面:将各截线首尾相连,围成截面
    三、作截面的几种方法
    (1)直接法:有两点在几何体的同一个面上,连接该两点即为几何体与截面的交线,找截面实际就是找交线的过程。
    (2)延长线法:同一个平面有两个点,可以连线并延长至与其他平面相交找到交点。
    (3)平行线法:过直线与直线外一点作截面,拖直线所在的面与点所在的平面平行,可以通过过点找直线的平行线找到几何体的截面的交线。
    模型演练:如下图E、F是几等分点,不影响作图。可以先默认为中点,等完全理解了,再改成任意等分点
    方法:两点成线相交法或者平行法
    特征:1.三点中,有两点连线在表面上.本题如下图是EF(这类型的关键);
    2.“第三点”是在外棱上,如C1,注意:此时合格C1点特殊,在于它是几何体顶点,实际上无论它在何处,只要在棱上就可以.
    方法一:相交法,做法如下图.
    方法二:平行线法,做法如下图.
    四、正方体中的基本截面类型
    二、题型精讲精练
    【典例1】用一个平面去截正方体,所得截面不可能是( )
    A.直角三角形B.直角梯形C.正五边形D.正六边形
    【答案】ABC
    【分析】
    根据正方体的几何特征,我们可分别画出用一个平面去截正方体得到的几何体的图形,然后逐一与四个答案中的图形进行比照,即可判断选项.
    【详解】
    当截面为三角形时,可能出现正三角形,但不可能出现直角三角形;
    截面为四边形时,可能出现矩形,平行四边形,等腰梯形,但不可能出现直角梯形;
    当截面为五边形时,不可能出现正五边形;
    截面为六边形时,可能出现正六边形,
    故选:ABC.
    【典例2】已知正四棱柱中,,,则该四棱柱被过点,C,E的平面截得的截面面积为______.
    【答案】
    【分析】在上取点,使得,连接,则四边形是平行四边形,
    由勾股定理可得,再结合余弦定理与面积公式即可求解
    【详解】由题意,正四棱柱中,,,
    可得,在上取点,使得,连接,则有,
    所以四边形是平行四边形,由勾股定理可得

    所以,所以,所以四边形是平行四边形的面积为,故答案为:
    【典例3】如图,在正方体中,,为棱的中点,为棱的四等分点(靠近点),过点作该正方体的截面,则该截面的周长是___________.
    【答案】
    【分析】首先根据面面平行的性质定理作出过点的正方体的截面,从而求截面的周长.
    【详解】如图,取的中点,取上靠近点的三等分点,
    连接,易证,则五边形为所求截面.
    因为,所以,
    则,故该截面的周长是.故答案为:.
    【典例4】已知三棱锥的所有棱长均相等,四个顶点在球的球面上,平面经过棱,,的中点,若平面截三棱锥和球所得的截面面积分别为,,则( )
    A.B.C.D.
    【答案】B
    【分析】根据平面截三棱锥所得三角形为正三角,即可求出三角形面积及外接圆面积,即可求解.
    【详解】设平面截三棱锥所得正三角边长为a,截面圆的半径为r,则,
    由正弦定理可得,,,故选:B
    【题型训练-刷模拟】
    1.截面形状问题
    一、单选题
    1.(2023·全国·高三专题练习)用一平面去截一长方体,则截面的形状不可能是( )
    A.四边形B.五边形C.六边形D.七边形
    2.(2023·全国·高三专题练习)已知在正方体中,,,分别是,,的中点,则过这三点的截面图的形状是( )
    A.三角形B.四边形C.五边形D.六边形
    3.(2023·全国·高三专题练习)已知在长方体中,,点,,分别在棱,和上,且,,,则平面截长方体所得的截面形状为( )
    A.三角形B.四边形C.五边形D.六边形
    4.(2023秋·江苏南京·高三统考开学考试)在正方体中,过点B的平面与直线垂直,则截该正方体所得截面的形状为( )
    A.三角形B.四边形C.五边形D.六边形
    5.(2023·河南·模拟预测)在正方体中,M,N分别为AD,的中点,过M,N,三点的平面截正方体所得的截面形状为( )
    A.六边形B.五边形C.四边形D.三角形
    6.(2023·全国·高三专题练习)在如图所示的棱长为20的正方体中,点为的中点,点在侧面上,且到的距离为6,到的距离为5,则过点且与垂直的正方体截面的形状是( )
    A.三角形B.四边形C.五边形D.六边形
    7.(2023·上海·高三统考学业考试)如图是长方体被一平面所截得到的几何体,四边形为截面,长方形为底面,则四边形的形状为( )
    A.梯形B.平行四边形
    C.可能是梯形也可能是平行四边形D.不确定
    2.求截面的面积
    一、单选题
    1.(2022春·山西朔州·高一校考阶段练习)在正方体中,棱长为3,E为棱上靠近的三等分点,则平面截正方体的截面面积为( )
    A.B.C.D.
    2.(2022秋·安徽合肥·高三统考期末)已知正方体的棱长为2,M、N分别为、的中点,过 、的平面所得截面为四边形,则该截面最大面积为( )
    A.B.C.D.
    3.(2023·安徽蚌埠·统考一模)如图,正方体的一个截面经过顶点及棱上一点,截面将正方体分成体积比为的两部分,则的值为( )
    A.B.C.D.
    4.(2023春·全国·高一专题练习)已知三棱锥的所有棱长均为3,球O与棱PA,PB,PC都相切,且平面ABC被球O截得的截面面积为,则球O的半径为( ).
    A.1B.C.D.或
    5.(2023·吉林通化·梅河口市第五中学校考模拟预测)若球是正三棱锥的外接球,,点在线段上,,过点作球的截面,则所得的截面中面积最小的截面的面积为( )
    A.B.C.D.
    6.(2023·四川内江·四川省内江市第六中学校考模拟预测)已知球O是正三棱锥(底面是正三角形,顶点在底面的射影为底面中心)的外接球,,,点E是线段BC的中点,过点E作球O的截面,则所得截面面积的最小值是( )
    A.B.C.D.
    7.(2023秋·湖南长沙·高三长沙一中校考阶段练习)如图,在棱长为1的正方体中,分别为棱的中点,过作该正方体外接球的截面,所得截面的面积的最小值为( )

    A.B.C.D.
    8.(2023·四川成都·校联考模拟预测)在三棱锥中,平面,,,,点F为棱AV上一点,过点F作三棱锥的截面,使截面平行于直线VB和AC,当该截面面积取得最大值时,( )
    A.B.
    C.D.
    9.(2023·安徽合肥·统考一模)已知正方体的棱长为4,M,N分别是侧面和侧面的中心,过点M的平面与直线ND垂直,平面截正方体所得的截面记为S,则S的面积为( )
    A.B.C.D.
    10.(2023·辽宁沈阳·东北育才学校校考模拟预测)在三棱锥中,,平面平面,三棱锥的所有顶点都在球的球面上,分别在线段上运动(端点除外),.当三棱锥的体积最大时,过点作球的截面,则截面面积的最小值为( )
    A.B.C.D.
    11.(2023·江苏·高一专题练习)已知正四棱锥的底面边长为2,侧棱长为,SC的中点为E,过点E做与SC垂直的平面,则平面截正四棱锥所得的截面面积为( )
    A.B.C.D.
    12.(2023春·湖北武汉·高一武汉市第十一中学校考阶段练习)已知正四棱锥的体积为,底面的面积为,点、分别为、的中点,点为的靠近点的三等分点,过点、、的平面将该四棱锥分成上、下两部分,截面形状为四边形,则该四边形的面积为( )
    A.B.C.D.
    二、填空题
    13.(2023春·河北保定·高一定州一中校考阶段练习)在棱长为2的正方体中,若E为棱的中点,则平面截正方体的截面面积为 .
    14.(2022·广西桂林·校联考二模)在三棱锥ABCD中,对棱,当平面α与三棱锥ABCD的某组对棱均平行时,则三棱锥ABCD被平面α所截得的截面面积最大值为 .
    15.(2019春·上海·高二上海市新中高级中学校考阶段练习)如图,在正方体中,AB=1,中点为Q,过三点的截面面积为 .
    16.(2023·江苏常州·江苏省前黄高级中学校考二模)在正四棱台中,,,M为棱的中点,当正四棱台的体积最大时,平面截该正四棱台的截面面积是 .
    17.(2023·江西吉安·吉安三中校考一模)如图,正方体的棱长为为的中点,为棱上的动点,过点的平面截该正方体所得的截面记为S,则下列命题正确的是 .(请写出所有正确命题的编号)
    ①当时,S为等腰梯形;
    ②当时,S与的交点满足;
    ③当时,S为六边形;
    ④当时,S的面积为.
    3.求截面的周长
    一、单选题
    1.(2023·河南新乡·统考三模)如图,在棱长为2的正方体中,是棱的中点,过三点的截面把正方体分成两部分,则该截面的周长为( )
    A.B.C.D.
    2.(2023春·四川南充·高三阆中中学校考阶段练习)如图,直四棱柱的所有棱长均为,,是侧棱的中点,则平面截四棱柱所得的截面图形的周长是( )
    A.B.
    C.D.
    3.(2023·江西鹰潭·贵溪市实验中学校考模拟预测)已知正方体的棱长为2,点为线段的中点,若点平面,且平面,则平面截正方体所得截面的周长为( )
    A.B.C.D.
    4.(2023·全国·高三专题练习)如图,在棱长为2的正方体中,点P是棱AB上的动点,过,P三点作正方体的截面,若截面把正方体分成体积之比为7:25的两部分,则该截面的周长为( )
    A.B.C.D.
    5.(2023·全国·高三专题练习)在正方体中,,为棱的四等分点(靠近点),为棱的四等分点(靠近点),过点,,作该正方体的截面,则该截面的周长是( )
    A.B.C.D.
    6.(2023·全国·高三专题练习)正三棱柱ABC﹣A1B1C1中,所有棱长均为2,点E,F分别为棱BB1,A1C1的中点,若过点A,E,F作一截面,则截面的周长为( )
    A.2+2B.C.D.
    7.(2023春·广西南宁·高三南宁三中校考专题练习)已知正方体的棱长为4,E,F分别是棱,BC的中点,则平面截该正方体所得的截面图形周长为( )
    A.6B.10C.D.
    二、填空题
    8.(2023·全国·高三专题练习)已知长方体中,AB=2,AD=4,,E,F分别为,的中点,则过D,E,F三点截得长方体的截面周长为
    9.(2023秋·四川成都·高三树德中学校考开学考试)如图,正方体的棱长为4,E是侧棱的中点,则平面截正方体所得的截面图形的周长是 .

    10.(2023春·上海黄浦·高三格致中学校考开学考试)正三棱柱中,所有棱长均为2,点、分别为棱、的中点,若过点、、作一截面,则截面的周长为 .
    11.(2023·山东泰安·统考模拟预测)在棱长为的正方体中,点分别是、、的中点,则过线段且平行于平面的截面图形的周长为 .
    12.(2023·全国·高三专题练习)如图,在直三棱柱中,,,,,为线段上的一动点,则过三点的平面截该三棱柱所得截面的最小周长为 .

    4.圆柱、圆锥、球的截面问题
    一、单选题
    1.(2023·山西阳泉·阳泉市第一中学校校考模拟预测)圆锥的母线长为4,侧面积是底面积的倍,过圆锥的两条母线作圆锥的截面,则该截面面积的最大值是( )
    A.8B.C.D.
    2.(2023·广西·统考模拟预测)一个圆锥的底面圆和顶点都恰好在球的球面上,且球心在圆锥体内部,若球的表面积为,到圆锥底面圆的距离为1,则该圆锥的侧面积为( )
    A.B.C.D.
    3.(2023·天津红桥·统考二模)用与球心距离为1的平面去截球,所得的截面面积为,则球的体积为( )
    A.B.
    C.D.
    4.(2023·陕西咸阳·武功县普集高级中学校考模拟预测)已知球的一个截面的面积为,球心到该截面的距离比球的半径小1,则球的表面积为( )
    A.B.C.D.
    5.(2023·全国·高三专题练习)圆柱内有一内接正三棱锥,过棱锥的一条侧棱和高作截面,正确的截面图是( )
    A.B.
    C.D.
    6.(2023秋·陕西西安·高三西安市铁一中学校考期末)如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是( )
    A.①②B.①③C.①④D.①⑤
    7.(2023·全国·高三专题练习)从一个底面圆半径与高均为2的圆柱中挖去一个正四棱锥(以圆柱的上底面为正四棱锥底面的外接圆,下底面圆心为顶点)而得到的几何体如图所示,今用一个平行于底面且距底面为1的平面去截这个几何体,则截面图形的面积为( )
    A.B.C.D.
    8.(2023·全国·高三专题练习)若过圆锥的轴的截面为边长为4的等边三角形,正方体的顶点,,,在圆锥底面上,,,,在圆锥侧面上,则该正方体的棱长为( )
    A.B.C.D.
    9.(2023·海南海口·海南中学校考二模)传说古希腊数学家阿基米德的墓碑上刻着“圆柱容球”,即:一个圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.如图是一个圆柱容球,为圆柱上下底面的圆心,为球心,为底面圆的一条直径,若球的半径,则平面DEF截球所得的截面面积最小值为( )

    A.B.C.D.
    10.(2023·江西南昌·江西师大附中校考三模)已知正方体的棱长为,为棱上的一点,且满足平面平面,则平面截四面体的外接球所得截面的面积为( )
    A.B.C.D.
    11.(2023·福建福州·福建省福州第一中学校考模拟预测)在矩形中,,将沿对角线翻折至的位置,使得平面平面,则在三棱锥的外接球中,以为直径的截面到球心的距离为( )
    A.B.C.D.
    12.(2023·全国·高三专题练习)某圆锥母线长为,底面半径为,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为( )
    A.B.C.D.
    13.(2023秋·重庆万州·高三重庆市万州第二高级中学校考阶段练习)已知圆台的上、下底面半径分别为r,R,高为h,平面经过圆台的两条母线,设截此圆台所得的截面面积为S,则( )
    A.当时,S的最大值为
    B.当时,S的最大值为
    C.当时,S的最大值为
    D.当时,S的最大值为
    二、填空题
    14.(2023·全国·高三专题练习)已知圆锥顶点为P,底面的中心为O,过直线OP的平面截该圆锥所得的截面是面积为的正三角形,则该圆锥的体积为 .
    15.(2023·全国·高三专题练习)将一个直角边长为2的等腰直角三角形绕其直角边所在的直线旋转一周所得圆锥的内切球的表面积为 .
    16.(2023·海南·校联考模拟预测)已知某球的体积为,该球的某截面圆的面积为,则球面上的点到该截面圆心的最大距离为 .
    17.(2023秋·四川南充·高三四川省南充高级中学校考阶段练习)已知点,,是圆锥表面上的点,该圆锥的侧面展开图为以点为圆心,4为半径的半圆,点是弧的中点,点是弧的中点(如图),以圆锥底面圆心为球心,半径为2的球被平面所截,则截面面积为 .
    18.(2023·陕西西安·校联考一模)某圆锥的底面半径为1,高为3,在该圆锥内部放置一个正三棱柱,则该正三棱柱体积的最大值为 .
    19.(2023·上海·高三专题练习)在圆柱中,底面圆半径为,高为,上底面圆的直径为,是底面圆弧上的一个动点,绕着底面圆周转,则的面积的范围 .
    20.(2023·重庆·统考模拟预测)已知三棱锥中,Q为BC中点,,侧面底面,则过点Q的平面截该三棱锥外接球所得截面面积的取值范围为 .
    21.(2023·江西上饶·校联考模拟预测)已知四棱锥的各个顶点都在球O的表面上,PA⊥平面ABCD,底面ABCD是等腰梯形,,,,,M是线段AB上一点,且.过点M作球O的截面,所得截面圆面积的最小值为,则= .
    22.(2023春·重庆万州·高三重庆市万州第二高级中学校考阶段练习)已知三棱锥的四个顶点在球的球面上,,是边长为的正三角形,三棱锥的体积为,为的中点,则过点的平面截球所得截面面积的最小值是 .
    相关试卷

    素养拓展35 圆锥曲线中的定直线问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用): 这是一份素养拓展35 圆锥曲线中的定直线问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含素养拓展35圆锥曲线中的定直线问题精讲+精练原卷版docx、素养拓展35圆锥曲线中的定直线问题精讲+精练解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。

    素养拓展33 曲线的轨迹方程问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用): 这是一份素养拓展33 曲线的轨迹方程问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含素养拓展33曲线的轨迹方程问题精讲+精练原卷版docx、素养拓展33曲线的轨迹方程问题精讲+精练解析版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。

    素养拓展29 立体几何中的结构不良问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用): 这是一份素养拓展29 立体几何中的结构不良问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含素养拓展29立体几何中的结构不良问题精讲+精练原卷版docx、素养拓展29立体几何中的结构不良问题精讲+精练解析版docx等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        素养拓展25 立体几何中的截面问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map