







还剩15页未读,
继续阅读
所属成套资源:全套华东师大版初中八年级数学上册课时课件
成套系列资料,整套一键下载
华师大版八年级上册11.2 实数教学课件ppt
展开
这是一份华师大版八年级上册11.2 实数教学课件ppt,共23页。
知识点2 实数的相关性质
1.(2023四川攀枝花期中)与数轴上的点一一对应的数是 ( )A.正数 B.负数 C.有理数 D.实数
解析 实数与数轴上的点一一对应,故D正确.
2.(2023河南南阳西峡二模)下列各数中,绝对值最大的数是 ( )A.3 B.0 C.- D.-
解析 ∵|3|=3,|0|=0, = , = ,且 >3> >0,故选D.
的绝对值是 ( ) B.-1.5- C. -1.5 D.1.5+
解析 ∵ ≈1.414,∴1.5- >0.∴1.5- 的绝对值是它本身.故选A.
4.(夹逼法)(2023内蒙古赤峰中考)如图,数轴上表示实数 的点可能是 ( ) A.点P B.点Q C.点R D.点S
解析 ∵4<7<9,∴2< <3,∴表示实数 的点可能是点Q.故选B.
5.(跨学科·物理)球从空中落到地面所用的时间t(秒)和球的起 始高度h(米)之间满足关系式:t= ,若球的起始高度为120米,则球落地所用时间与下列最接近的是 ( )A.3秒 B.4秒 C.5秒 D.6秒
解析 ∵h=120,∴t= = .∵ 与 =5最接近,∴球落地所用时间与5秒最接近.故选C.
6. - 的相反数为 ,|1- |= ,绝对值为 的数为 .
解析 - 的相反数为-( - )= - ;|1- |= -1; =3,∴绝对值为 的数为±3.
7.(2023四川巴中中考)在0, ,-π,-2四个数中,最小的实数是 .
解析 = ,∵-π<-2<0< ,即-π<-2<0< ,∴最小的实数是-π.
8.(数形结合思想)(2023陕西中考)如图,在数轴上,点A表示 ,点B与点A位于原点的两侧,且与原点的距离相等,则点B表示的数是 .
解析 因为点A表示 ,点B与点A位于原点的两侧,且与原点的距离相等,说明点A与点B表示的数互为相反数,所以点B表 示的数是- .
9.(新独家原创)如图,将点B沿数轴向左平移4个单位得到 点A,点A所表示的数a的绝对值是 -1,求点B所表示的数b的值.
解析 ∵|a|= -1,且a<0,∴a=- +1.∵点B沿数轴向左平移4个单位得到点A,∴b=- +1+4=- +5.
10.(2024河南信阳淮滨期中)计算: + - = .
解析 原式= +0.1-2=-1.4.
11.(1)(2024吉林长春绿园期末)计算:(-1)2 023+ + - .(2)用计算器计算: + - - .(精确到0.01)
解析 (1)原式=-1+3+ -4=-2+ .(2) + - -| -5|= +5-(-4)-(5- )= +5+4-5+ =2 +4≈7.46.
12.(2024河南郑州外国语学校期中,9,★☆☆)已知实数a在数 轴上的位置如图所示,则化简|a+ |+|a-1|的结果为 ( ) A.-2a-1 B.2a+ -1C. +1 D. -1
解析 由题中数轴得,-10,a-1<0,∴|a+ |+|a-1|=a+ +1-a= +1.故选C.
13.(2021四川资阳中考,6,★★☆)若a= ,b= ,c=2,则a,b,c的大小关系为 ( )A.b解析 ∵ < , > , = =2=c,∴a14.(2021北京中考,7,★★☆)已知432=1 849,442=1 936,452=2 025,462=2 116,若n为整数且n< 解析 ∵1 936<2 021<2 025,∴44< <45,∴n=44.故选B.
15.(2023甘肃兰州中考,15,★★☆)如图,将面积为7的正方形 OABC和面积为9的正方形ODEF分别绕原点O顺时针旋转, 使OA,OD落在数轴上,点A,D在数轴上对应的数字分别为a、 b,则b-a= .
解析 ∵正方形OABC和正方形ODEF的面积分别为7和9,∴ OA= ,OD=3,∴a=OA= ,b=OD=3,∴b-a=3- .
16.(2024河南南阳实验中学月考,16,★★☆)计算:(1) + - + +|1- |.(2) × + × ÷ .
解析 (1) + - + +|1- |=2+0- + + -1=2+0- - + -1= .
(2) × + × ÷ = ×(-4)+3×3÷ =-10+3×3×2
17.(新考向·代数推理)(2024河南周口淮阳期中,18,★★☆)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点 A表示- ,设点B所表示的数为m.(1)m= .(2)求|m+1|+|m-1|的值.(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+6|与 互为相反数,求2c+3d的平方根.
解析 (1)2- .(2)∵m=2- ,∴m+1=2- +1=3- >0,m-1=2- -1=1- <0,∴|m+1|+|m-1|=m+1+1-m=2,∴|m+1|+|m-1|的值为2.(3)∵|2c+6|与 互为相反数,∴|2c+6|+ =0,∴2c+6=0,d-4=0,∴c=-3,d=4,∴2c+3d=-6+12=6,∴2c+3d的平方根为± .
18.(2024陕西西安经开二中月考,22,★★★)已知 =3,3a+b-1的平方根是±4,c是 的整数部分,求a+4b+c的算术平方根.
解析 ∵ =3,∴2a-1=32=9,解得a=5,∵3a+b-1的平方根是±4,∴3a+b-1=(±4)2=16,∵a=5,∴3×5+b-1=16,∴b=2,∵c是 的整数部分,∴c=3,∴a+4b+c=5+4×2+3=16,∴a+4b+c的算术平方根是4.
19.(运算能力)(新考向·阅读理解试题)(2024贵州贵阳十七中期中)阅读下面的文字,解答问题: 我们知道 是无理数,无理数是无限不循环小数,因此不能将 的小数部分全部写出来,于是小慧用 -1来表示 的小数部分,你明白小慧的表示方法吗?事实上,因为 的整数部分是1,将一个数减去它的整数部分,差就是小数部分. 例如:∵ < < ,即2< <3,∴ 的整数部分为2,小数部分为 -2.请解答:
知识点2 实数的相关性质
1.(2023四川攀枝花期中)与数轴上的点一一对应的数是 ( )A.正数 B.负数 C.有理数 D.实数
解析 实数与数轴上的点一一对应,故D正确.
2.(2023河南南阳西峡二模)下列各数中,绝对值最大的数是 ( )A.3 B.0 C.- D.-
解析 ∵|3|=3,|0|=0, = , = ,且 >3> >0,故选D.
的绝对值是 ( ) B.-1.5- C. -1.5 D.1.5+
解析 ∵ ≈1.414,∴1.5- >0.∴1.5- 的绝对值是它本身.故选A.
4.(夹逼法)(2023内蒙古赤峰中考)如图,数轴上表示实数 的点可能是 ( ) A.点P B.点Q C.点R D.点S
解析 ∵4<7<9,∴2< <3,∴表示实数 的点可能是点Q.故选B.
5.(跨学科·物理)球从空中落到地面所用的时间t(秒)和球的起 始高度h(米)之间满足关系式:t= ,若球的起始高度为120米,则球落地所用时间与下列最接近的是 ( )A.3秒 B.4秒 C.5秒 D.6秒
解析 ∵h=120,∴t= = .∵ 与 =5最接近,∴球落地所用时间与5秒最接近.故选C.
6. - 的相反数为 ,|1- |= ,绝对值为 的数为 .
解析 - 的相反数为-( - )= - ;|1- |= -1; =3,∴绝对值为 的数为±3.
7.(2023四川巴中中考)在0, ,-π,-2四个数中,最小的实数是 .
解析 = ,∵-π<-2<0< ,即-π<-2<0< ,∴最小的实数是-π.
8.(数形结合思想)(2023陕西中考)如图,在数轴上,点A表示 ,点B与点A位于原点的两侧,且与原点的距离相等,则点B表示的数是 .
解析 因为点A表示 ,点B与点A位于原点的两侧,且与原点的距离相等,说明点A与点B表示的数互为相反数,所以点B表 示的数是- .
9.(新独家原创)如图,将点B沿数轴向左平移4个单位得到 点A,点A所表示的数a的绝对值是 -1,求点B所表示的数b的值.
解析 ∵|a|= -1,且a<0,∴a=- +1.∵点B沿数轴向左平移4个单位得到点A,∴b=- +1+4=- +5.
10.(2024河南信阳淮滨期中)计算: + - = .
解析 原式= +0.1-2=-1.4.
11.(1)(2024吉林长春绿园期末)计算:(-1)2 023+ + - .(2)用计算器计算: + - - .(精确到0.01)
解析 (1)原式=-1+3+ -4=-2+ .(2) + - -| -5|= +5-(-4)-(5- )= +5+4-5+ =2 +4≈7.46.
12.(2024河南郑州外国语学校期中,9,★☆☆)已知实数a在数 轴上的位置如图所示,则化简|a+ |+|a-1|的结果为 ( ) A.-2a-1 B.2a+ -1C. +1 D. -1
解析 由题中数轴得,-10,a-1<0,∴|a+ |+|a-1|=a+ +1-a= +1.故选C.
13.(2021四川资阳中考,6,★★☆)若a= ,b= ,c=2,则a,b,c的大小关系为 ( )A.b
15.(2023甘肃兰州中考,15,★★☆)如图,将面积为7的正方形 OABC和面积为9的正方形ODEF分别绕原点O顺时针旋转, 使OA,OD落在数轴上,点A,D在数轴上对应的数字分别为a、 b,则b-a= .
解析 ∵正方形OABC和正方形ODEF的面积分别为7和9,∴ OA= ,OD=3,∴a=OA= ,b=OD=3,∴b-a=3- .
16.(2024河南南阳实验中学月考,16,★★☆)计算:(1) + - + +|1- |.(2) × + × ÷ .
解析 (1) + - + +|1- |=2+0- + + -1=2+0- - + -1= .
(2) × + × ÷ = ×(-4)+3×3÷ =-10+3×3×2
17.(新考向·代数推理)(2024河南周口淮阳期中,18,★★☆)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点 A表示- ,设点B所表示的数为m.(1)m= .(2)求|m+1|+|m-1|的值.(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+6|与 互为相反数,求2c+3d的平方根.
解析 (1)2- .(2)∵m=2- ,∴m+1=2- +1=3- >0,m-1=2- -1=1- <0,∴|m+1|+|m-1|=m+1+1-m=2,∴|m+1|+|m-1|的值为2.(3)∵|2c+6|与 互为相反数,∴|2c+6|+ =0,∴2c+6=0,d-4=0,∴c=-3,d=4,∴2c+3d=-6+12=6,∴2c+3d的平方根为± .
18.(2024陕西西安经开二中月考,22,★★★)已知 =3,3a+b-1的平方根是±4,c是 的整数部分,求a+4b+c的算术平方根.
解析 ∵ =3,∴2a-1=32=9,解得a=5,∵3a+b-1的平方根是±4,∴3a+b-1=(±4)2=16,∵a=5,∴3×5+b-1=16,∴b=2,∵c是 的整数部分,∴c=3,∴a+4b+c=5+4×2+3=16,∴a+4b+c的算术平方根是4.
19.(运算能力)(新考向·阅读理解试题)(2024贵州贵阳十七中期中)阅读下面的文字,解答问题: 我们知道 是无理数,无理数是无限不循环小数,因此不能将 的小数部分全部写出来,于是小慧用 -1来表示 的小数部分,你明白小慧的表示方法吗?事实上,因为 的整数部分是1,将一个数减去它的整数部分,差就是小数部分. 例如:∵ < < ,即2< <3,∴ 的整数部分为2,小数部分为 -2.请解答: