人教A版普通高中数学一轮复习第2章第8节函数与方程课件
展开·考试要求·1.借助函数图象,会用数学语言表示函数的单调性、最值,理解实际意义.2.理解单调性、最值及其几何意义.
知识点一 函数的零点1.判断下列说法的正误,正确的打“√”,错误的打“×”.(1)函数f(x)的零点,即函数f(x)的图象与x轴的交点.( )(2)二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点.( )(3)函数f(x)=lg x的零点是(1,0).( )
必备知识 落实“四基”
2.(教材改编题)函数f(x)=(x2-2)(x2-3x+2)的零点为________________.
1.定义:使f(x)=0的_______叫做函数y=f(x)的零点.2.三个等价关系:
注意点:函数的零点不是一个“点”,而是方程f(x)=0的实数解,是函数y=f(x)的图象与x轴的公共点的横坐标.
知识点二 函数零点存在定理1.(教材改编题)下列函数图象与x轴均有交点,其中不能用二分法求图中的函数零点的是( )
函数零点存在定理(1)条件:①函数y=f(x)在区间[a,b]上的图象是一条__________的曲线.②f(a)·f(b)_____.(2)结论:函数y=f(x)在区间(a,b)上至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.
注意点:由函数y=f(x)(图象是连续不断的)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示,所以f(a)·f(b)<0是y=f(x)在闭区间[a,b]上有零点的充分不必要条件.
【常用结论】1.已知函数f(x)在[a,b]上单调,且f(x)的图象是连续不断的一条曲线,若f(a)·f(b)<0,则函数f(x)在(a,b)上有且只有一个零点.2.连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.3.周期函数如果存在零点,则必有无穷个零点.
应用 (多选题)有如下说法,其中正确的有( )A.函数f(x)的零点为x0,则函数f(x)的图象经过点(x0,0)时,函数值一定变号B.连续不断的函数,相邻两个零点之间的所有函数值保持同号C.函数f(x)在区间[a,b]上连续,若满足f(a)·f(b)<0,则方程f(x)=0在区间[a,b]上一定有实根D.“二分法”对连续不断的函数的所有零点都有效
BC 解析:由结论知A错误,B正确,由函数零点存在定理可得C正确.由于“二分法”是针对连续不断的函数的变号零点而言的,所以D错误.故选BC.
1.函数f(x)=x+ln x-3的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)
核心考点 提升“四能”
判断函数零点所在的区间
C 解析:(方法一)因为函数f(x)是增函数,且f(2)=ln 2-1<0,f(3)=ln 3>0,所以由函数零点存在定理,得函数f(x)的零点位于区间(2,3)上.故选C.(方法二)函数f(x)=x+ln x-3的零点所在区间转化为g(x)=ln x,h(x)=-x+3的图象的交点横坐标所在的范围.如图所示,可知函数f(x)的零点在(2,3)内.
2.(多选题)若函数y=f(x)在区间[a,b]上的图象为一条连续不断的曲线,则下列说法错误的有( )A.若f(a)f(b)>0,则不存在实数c∈[a,b],使得f(c)=0B.若f(a)f(b)<0,则存在且只存在一个实数c∈[a,b],使得f(c)=0C.若f(a)f(b)>0,则可能存在实数c∈[a,b],使得f(c)=0D.若f(a)f(b)<0,则可能不存在实数c∈[a,b],使得f(c)=0
确定函数f(x)的零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y=f(x)在区间[a,b]上的图象是否连续,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.(2)数形结合法:通过画函数图象,观察图象与x轴在给定区间上是否有交点来判断.
(2)已知函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)=2|x|-1,则函数F(x)=f(x)-|lg x|的零点个数是( )A.9B.10C.11D.18
B 解析:由题意,分别画出函数y=f(x)和y=|lg x|的图象,如图所示.由图可知,y=f(x)与y=|lg x|的图象共有10个交点,故原函数有10个零点.
反思感悟函数零点个数的判断方法(1)直接求零点:令f(x)=0,有几个解就有几个零点.(2)函数零点存在定理:要求函数f(x)在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,再结合函数的图象与性质确定函数的零点个数.(3)利用函数图象:作出两函数的图象,观察其交点个数即得零点个数.
1.函数f(x)=2x+x3-2在区间(0,1)内的零点个数是( )A.0B.1C.2D.3B 解析:(方法一)因为 f(0)f(1)=(-1)×1=-1<0,且函数 f(x)在R上单调递增且连续,所以函数f(x)在区间(0,1)内有且只有1个零点.(方法二)设y1=2x,y2=2-x3,在同一平面直角坐标系中画出两函数的图象如图所示.由图可知,两图象在(0,1)内的交点个数即f(x)在区间(0,1)内的零点个数,故函数f(x)在区间(0,1)内有且只有1个零点.
2.函数f(x)=|x-2|-ln x在定义域内的零点的个数为( )A.0B.1C.2D.3C 解析:由题意可知f(x)的定义域为(0,+∞).在同一平面直角坐标系中作出函数y=|x-2|(x>0),y=ln x(x>0)的图象如图所示.由图可知函数f(x)在定义域内的零点个数为2.
反思感悟根据函数零点所在区间求参数的步骤
考向2 根据函数零点的个数求参数【例3】(2024·黄冈模拟)设min{m,n}表示m,n中的较小数(当m=n时,min{m,n}=m=n).若函数f(x)=min{|x|-1,2x2-ax+a+6}至少有3个零点,则实数a的取值范围是( )A.[12,+∞) B.(-∞,-4]∪(12,+∞)C.(-∞,-4)∪[12,+∞) D.(-∞,-4)
反思感悟利用函数零点个数求参数的方法由函数零点个数求参数问题,可采用数形结合法,先对解析式变形,将其变为关于两个函数的方程,再在同一平面直角坐标系中,画出两个函数的图象,通过数形结合求解.
1.(2024·聊城模拟)函数f(x)=lg2x+x2+m在区间(2,4)上存在零点,则实数m的取值范围是( )A.(-∞,-18)B.(5,+∞) C.(5,18)D.(-18,-5)D 解析:由题意,知函数f(x)=lg2x+x2+m在区间(2,4)上单调递增且存在零点,所以由函数零点存在定理得f(2)·f(4)<0,即(m+5)(m+18)<0,解得-18<m<-5,所以实数m的取值范围是(-18,-5).故选D.
人教A版普通高中数学一轮复习第3章第2节微专题隐零点问题课件: 这是一份人教A版普通高中数学一轮复习第3章第2节微专题隐零点问题课件,共6页。
人教A版普通高中数学一轮复习第3章微专题公切线问题课件: 这是一份人教A版普通高中数学一轮复习第3章微专题公切线问题课件,共6页。PPT课件主要包含了思维建模等内容,欢迎下载使用。
人教A版普通高中数学一轮复习第2章第3节微专题抽象函数的性质课件: 这是一份人教A版普通高中数学一轮复习第2章第3节微专题抽象函数的性质课件,共12页。PPT课件主要包含了思维建模等内容,欢迎下载使用。