搜索
    上传资料 赚现金
    第12讲 角平分线的性-人教版初中七年级(七升八)数学暑假衔接(教师版+学生版)讲义
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      第12讲 角平分线的性质(教师版)-七升八数学暑假衔接(人教版).docx
    • 学生
      第12讲 角平分线的性质(学生版)-七升八数学暑假衔接(人教版).docx
    第12讲 角平分线的性-人教版初中七年级(七升八)数学暑假衔接(教师版+学生版)讲义01
    第12讲 角平分线的性-人教版初中七年级(七升八)数学暑假衔接(教师版+学生版)讲义02
    第12讲 角平分线的性-人教版初中七年级(七升八)数学暑假衔接(教师版+学生版)讲义03
    第12讲 角平分线的性-人教版初中七年级(七升八)数学暑假衔接(教师版+学生版)讲义01
    第12讲 角平分线的性-人教版初中七年级(七升八)数学暑假衔接(教师版+学生版)讲义02
    第12讲 角平分线的性-人教版初中七年级(七升八)数学暑假衔接(教师版+学生版)讲义03
    还剩46页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第12讲 角平分线的性-人教版初中七年级(七升八)数学暑假衔接(教师版+学生版)讲义

    展开
    这是一份第12讲 角平分线的性-人教版初中七年级(七升八)数学暑假衔接(教师版+学生版)讲义,文件包含第12讲角平分线的性质教师版-七升八数学暑假衔接人教版docx、第12讲角平分线的性质学生版-七升八数学暑假衔接人教版docx等2份学案配套教学资源,其中学案共69页, 欢迎下载使用。

    一、角的平分线的性质
    角的平分线的性质:角的平分线上的点到角两边的距离相等.
    要点诠释:
    用符号语言表示角的平分线的性质定理:
    若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.
    二、角的平分线的逆定理
    角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.
    要点诠释:
    用符号语言表示角的平分线的判定:
    若PE⊥AD于点E,PF⊥BD于点F,PE=PF,则PD平分∠ADB
    三、角的平分线的尺规作图
    角平分线的尺规作图
    (1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.
    (2)分别以D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB内部交于点C.
    (3)画射线OC.
    射线OC即为所求.
    【考点剖析】
    题型一:角平分线性质定理
    例1.(2023春·陕西榆林·八年级校考期末)如图,在四边形中,,点E为的中点,且平分.求证:是的平分线.

    【变式1】(2023春·山西太原·七年级校考阶段练习)如图,中,,平分,,,求的面积.

    【变式2】(2023春·湖南常德·八年级统考期末)如图,点是的三个内角平分线的交点,若的周长为,面积为,则点到边的距离是( )
    A.B.C.D.
    【变式3】(湖南省郴州市2022-2023学年八年级下学期期末数学试题)如图,在中,,平分,于点E.如果,那么______.

    【变式4】(2023春·广东深圳·七年级统考期末)把两个同样大小的含角的三角尺像如图所示那样放置,其中是AD与BC的交点,若,则点到的距离为______.

    【变式5】如图,P为三条角平分线的交点,PH、PN、PM分别垂直于BC、AC、AB,垂足分别为H、N、M.已知的周长为,,则的面积为______.

    【变式6】(2023春·陕西榆林·七年级校考期末)如图,在中,平分,,.
    (1)求的度数;
    (2)若,垂足为,,,求的面积.
    题型二:角平分线性质定理及证明
    例2.(2023秋·河南三门峡·八年级统考期末)如图,在的两边上分别取点,连接.若平分,平分.
    (1)求证:平分;
    (2)若,且与的面积分别是和,求线段与的长度之和.
    【变式1】(2022秋·河南安阳·八年级校考阶段练习)如图,点E是的中点,,平分.求证:
    (1)平分;
    (2).
    【变式2】(2022秋·北京朝阳·八年级校考期中)如图,在中,,,于点E,平分,点F在上,.求证:.
    【变式3】如图,△ABC的两条高BE、CD相交于点O,BD=CE.
    (1)求证:BE=CD;
    (2)判断点O是否在∠BAC的平分线上,并说明理由.
    题型三:角平分线的判定定理
    例3.如图,,是的中点,平分,求证:平分.

    【变式1】(2023春·广东深圳·八年级校考期中)如图,,点E是的中点,平分.

    (1)求证:是的平分线;
    (2)已知,,求四边形的面积.
    【变式2】如图,在和中,,(),,直线,交于点,连接.

    (1)求证:;
    (2)用表示的大小;
    (3)求证:平分.
    【变式3】如图,已知,,是的角平分线,且交于点P.

    (1)______.
    (2)求证:点P在的平分线上.
    (3)求证:.
    【变式4】(2023春·福建福州·七年级福建省福州第一中学校考期末)已知O是四边形内一点,且,,.

    (1)如图1,连接,交点为G,连接,求证:
    ①;
    ②平分;
    (2)如图2,若,E是的中点,过点O作,垂足为F,求证:点E,O,F在同一条直线上.
    题型四:尺规作图—作角平分线
    例4.(2023春·陕西榆林·七年级校考期末)如图,已知,利用尺规,在边上求作一点,使得.(保留作图痕迹,不写作法)

    【变式1】(2023春·福建福州·七年级福建省福州第十九中学校考期末)如图,中,,为边上的高.

    (1)尺规作图,在边上求作点,使得点到边的距离等于(保留作图痕迹,不写做法):
    (2)连接(为所求作的点)交于点,若,求的度数.
    【变式2】(2023·甘肃兰州·统考中考真题)综合与实践
    问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在和上分别取点C和D,使得,连接,以为边作等边三角形,则就是的平分线.

    请写出平分的依据:____________;
    类比迁移:
    (2)小明根据以上信息研究发现:不一定必须是等边三角形,只需即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在的边,上分别取,移动角尺,使角尺两边相同刻度分别与点M,N重合,则过角尺顶点C的射线是的平分线,请说明此做法的理由;
    拓展实践:
    (3)小明将研究应用于实践.如图4,校园的两条小路和,汇聚形成了一个岔路口A,现在学校要在两条小路之间安装一盏路灯E,使得路灯照亮两条小路(两条小路一样亮),并且路灯E到岔路口A的距离和休息椅D到岔路口A的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规在对应的示意图5中作出路灯E的位置.(保留作图痕迹,不写作法)

    【变式3】(2023春·重庆九龙坡·七年级校考期末)如图,已知在中,,于点.

    (1)尺规作图:作的平分线交于点,交于点;(要求:保留作图痕迹,不写作法,不下结论)
    (2)在(1)的条件下,求证:.
    __________
    又__________
    __________
    __________
    平分
    __________

    【过关检测】
    一、单选题
    1.(2023春·四川泸州·八年级统考期末)如图,,点C是内一点,于点D,于点E.且,则的度数是( )

    A.B.C.D.
    2.(陕西省榆林市高新区2022-2023学年七年级下学期期末数学试题)如图,在中,的平分线交于点D,过点D作交于点E.若,则点D到的距离是( )

    A.B.C.D.
    3.(2023春·河南焦作·七年级校考期末)如图,在四边形中,,,连接,,.若P是边上一动点,则的长不可能是( )

    A.B.3C.4D.6
    4.(2023·福建·统考中考真题)阅读以下作图步骤:
    ①在和上分别截取,使;
    ②分别以为圆心,以大于的长为半径作弧,两弧在内交于点;
    ③作射线,连接,如图所示.
    根据以上作图,一定可以推得的结论是( )

    A.且B.且
    C.且D.且
    5.(2023春·陕西西安·七年级交大附中分校校考期末)如图,分别平分于点D,,的面积为12,则的周长为( )

    A.4B.6C.24D.12
    6.(2023春·湖南永州·八年级统考期末)点在的平分线上,点到边的距离等于,点是边上的任意一点,则关于长度的选项正确的是( )
    A.B.C.D.
    7.(2023春·湖南娄底·八年级统考期末)如图,在中,,,,平分,则点D到的距离等于( )

    A.B.C.2D.1
    8.(2023春·湖南娄底·八年级统考期末)如图,三条公路把A,B,C三个村庄连成一个三角形区域,现决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( )

    A.三角形三个内角的角平分线的交点B.三角形三条边的垂直平分线的交点
    C.三角形三条高的交点D.三角形三条中线的交点
    9.(2023春·陕西榆林·八年级统考期末)如图,平分,于点E,,F是射线上的任意一点,则的长度不可能是( )

    A.4B.5C.D.6
    10.(2023春·河南开封·七年级统考期末)如图,在中,,平分,于,则下列结论:①;②平分;③;④,其中正确的是( )

    A.1个B.2个C.3个D.4个
    二、填空题
    11.(2023春·河南平顶山·七年级统考期末)如图,在中,.以点为圆心,任意长为半径画弧,分别交,于点,,再分别以点,为圆心,大于的长为半径画弧,两弧在的内部相交于点,作射线交边于点,若,的面积为,则线段的长为________.

    12.(2023春·山东济南·七年级统考期末)如图,在中,,利用尺规在上分别截取;分别以点M,N为圆心,大于的长为半径作弧,两弧在内部交于点E,作射线交于点F,若,点H为线段上的一动点,则的最小值是________.

    13.(2023春·重庆沙坪坝·七年级重庆八中校考期末)如图,中,,AD平分交BC于点D,E为线段AC上一点,连接DE,且.若,,则AE的长为________.

    14.(2023·湖南岳阳·统考中考真题)如图,①在上分别截取线段,使;②分别以为圆心,以大于的长为半径画弧,在内两弧交于点;③作射线.若,则_________.

    15.(2023春·四川达州·七年级统考期末)已知,如图,中,在和边上分别截取,,使,分别以M,N为圆心,以大于的长为半径作弧,两弧在内交于点E,作射线,点P,D分别是射线,上一点,过点P作,垂足为点C,连接,若,,则的面积是______.

    16.(2023春·山东泰安·七年级统考期末)如图,在锐角中,,、为的角平分线.且、交于点,连接.有下列四个结论:①;②;③;④.其中结论正确的序号是__________ .

    三、解答题
    17.(2023春·重庆江北·七年级统考期末)完成下面的解答过程,并填上适当的理由.
    已知:如图,,平分,平分.
    求证:.

    解: ∵(已知)
    ∴( ① ).
    ∵平分,平分,
    ∴,.
    ∴___②___( ③ ).
    ∴( ④ ).
    18.(2023春·山东泰安·七年级统考期末)如图,在和中,,,,,连接、交于点,连接.求证:

    (1);
    (2)平分.
    19.(2023春·河南驻马店·七年级统考期末)如图,在中,平分,平分,于点.
    (1)若,,求的度数;
    (2)若,,求的面积.
    20.(2023·浙江·八年级假期作业)如图,在中,,平分,,如果,,求的长度及的度数.

    21.(2023春·广西南宁·七年级南宁十四中校考期末)如图,已知.

    (1)尺规作图:作的角平分线交于点G(不写作法,保留作图痕迹);
    (2)如果,,的面积为18,求的面积.
    22.(2023春·山西太原·七年级统考期末)如图,在中,是它的角平分线,于点于点,且.线段与相等吗?说明理由.
    23.(重庆市大渡口区2022-2023学年七年级下学期期末数学试题)如图,,.

    (1)用直尺和圆规完成以下基本作图:过点A作的角平分线,交于点,与的延长线交于点E;(不写做法,保留作图痕迹)
    (2)求证:.
    证明:∵(已知),
    ∴(①__________).
    ∵平分,
    ∴②__________(角平分线的定义).
    ∴(③__________).
    ∵(已知),
    ∴④__________(⑤__________).
    ∴(两直线平行,同位角相等).
    ∴(等量代换).
    24.(2023春·辽宁阜新·七年级校考阶段练习)如图,中,,以顶点B为圆心,任意长为半径画孤,分别交边于点E,F;再分别以E,F为圆心,大于长为半径作弧,两弧交于点P,作射线,交边于点G.
    (1)的度数为____________;
    (2)若,H是边上一动点,则线段的最小值为____________;
    (3)若的面积为4,则的面积为____________;(不必写出解答过程)
    25.(2023春·江苏南京·七年级统考期末)中,平分线与相交于点,,垂足为.
    (1)如图1,若,则______°;

    (2)如图2,若是锐角三角形.过点作,交于点.依题意补全图2,用等式表示,与之间的数量关系并证明.

    (3)若是钝角三角形,其中.过点作,交直线于点,直接写出,与之间的数量关系.
    相关学案

    第16讲 重难点04(双)角平分线模型-人教版初中七年级(七升八)数学暑假衔接(教师版+学生版)讲义: 这是一份第16讲 重难点04(双)角平分线模型-人教版初中七年级(七升八)数学暑假衔接(教师版+学生版)讲义,文件包含第16讲重难点04双角平分线模型教师版-七升八数学暑假衔接人教版docx、第16讲重难点04双角平分线模型学生版-七升八数学暑假衔接人教版docx等2份学案配套教学资源,其中学案共43页, 欢迎下载使用。

    第07讲 全等三角形-人教版初中七年级(七升八)数学暑假衔接(教师版+学生版)讲义: 这是一份第07讲 全等三角形-人教版初中七年级(七升八)数学暑假衔接(教师版+学生版)讲义,文件包含第07讲全等三角形教师版-七升八数学暑假衔接人教版docx、第07讲全等三角形学生版-七升八数学暑假衔接人教版docx等2份学案配套教学资源,其中学案共33页, 欢迎下载使用。

    第06讲 多边形内角和-人教版初中七年级(七升八)数学暑假衔接(教师版+学生版)讲义: 这是一份第06讲 多边形内角和-人教版初中七年级(七升八)数学暑假衔接(教师版+学生版)讲义,文件包含第06讲多边形内角和教师版-七升八数学暑假衔接人教版docx、第06讲多边形内角和学生版-七升八数学暑假衔接人教版docx等2份学案配套教学资源,其中学案共41页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第12讲 角平分线的性-人教版初中七年级(七升八)数学暑假衔接(教师版+学生版)讲义
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map