中考数学重难点专题题位训练及押题预测专题1选择题压轴题多结论问题(原卷版+解析)
展开1.(2023•恩施州)如图,在四边形ABCD中,∠A=∠B=90°,AD=10cm,BC=8cm,点P从点D出发,以1cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )
A.当t=4s时,四边形ABMP为矩形 B.当t=5s时,四边形CDPM为平行四边形
C.当CD=PM时,t=4s D.当CD=PM时,t=4s或6s
2.(2023•攀枝花)如图,以△ABC的三边为边在BC上方分别作等边△ACD、△ABE、△BCF.且点A在△BCF内部.给出以下结论:①四边形ADFE是平行四边形;②当∠BAC=150°时,四边形ADFE是矩形;③当AB=AC时,四边形ADFE是菱形;④当AB=AC,且∠BAC=150°时,四边形ADFE是正方形.其中正确结论有 (填上所有正确结论的序号).
类型二 一次函数中的多结论问题
3.(2023•攀枝花)中国人逢山开路,遇水架桥,靠自己勤劳的双手创造了世界奇迹.雅西高速是连接雅安和西昌的高速公路,被国内外专家学者公认为全世界自然环境最恶劣、工程难度最大、科技含量最高的山区高速公路之一,全长240km.一辆货车和一辆轿车先后从西昌出发驶向雅安,如图,线段OM表示货车离西昌距离y1(km)与时间x(h)之间的函数关系:折线OABN表示轿车离西昌距离y2(km)与时间x(h)之间的函数关系,则以下结论错误的是( )
A.货车出发1.8小时后与轿车相遇
B.货车从西昌到雅安的速度为60km/h
C.轿车从西昌到雅安的速度为110km/h
D.轿车到雅安20分钟后,货车离雅安还有20km
4.(2023•赤峰)已知王强家、体育场、学校在同一直线上,下面的图象反映的过程是:某天早晨,王强从家跑步去体育场锻炼,锻炼结束后,步行回家吃早餐,饭后骑自行车到学校.图中x表示时间,y表示王强离家的距离.则下列结论正确的是 .(填写所有正确结论的序号)
①体育场离王强家2.5km
②王强在体育场锻炼了30min
③王强吃早餐用了20min
④王强骑自行车的平均速度是0.2km/min
类型三 二次函数中的多结论问题
5.(2023•内蒙古)如图,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣1,0),抛物线的对称轴为直线x=1,下列结论:①abc<0;②3a+c=0;③当y>0时,x的取值范围是﹣1≤x<3;④点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是( )
A.1个B.2个C.3个D.4个
6.(2023•巴中)函数y=|ax2+bx+c|(a>0,b2﹣4ac>0)的图象是由函数y=ax2+bx+c(a>0,b2﹣4ac>0)的图象x轴上方部分不变,下方部分沿x轴向上翻折而成,如图所示,则下列结论正确的是( )
①2a+b=0;②c=3;③abc>0;④将图象向上平移1个单位后与直线y=5有3个交点.
A.①②B.①③C.②③④D.①③④
7.(2023•资阳)如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是( )
A.4个B.3个C.2个D.1个
8.(2023•丹东)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,结合图象分析如下结论:①abc>0;②b+3a<0;③当x>0时,y随x的增大而增大;④若一次函数y=kx+b(k≠0)的图象经过点A,则点E(k,b)在第四象限;⑤点M是抛物线的顶点,若CM⊥AM,则a=66.其中正确的有( )
A.1个B.2个C.3个D.4个
9.(2023•日照)已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为x=32,且经过点(﹣1,0).下列结论:①3a+b=0;②若点(12,y1),(3,y2)是抛物线上的两点,则y1<y2;③10b﹣3c=0;④若y≤c,则0≤x≤3.其中正确的有( )
A.1个B.2个C.3个D.4个
10.(2023•荆门)抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若x0>﹣4,则y0>c.其中正确结论的个数为( )
A.1个B.2个C.3个D.4个
11.(2023•牡丹江)如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,并与x轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②(a+c)2﹣b2=0;③9a+4c<0;④若m为任意实数,则am2+bm+2b≥4a,正确的个数是( )
A.1B.2C.3D.4
12.(2023•烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其对称轴为直线x=−12,且与x轴的一个交点坐标为(﹣2,0).下列结论:①abc>0;②a=b;③2a+c=0;④关于x的一元二次方程ax2+bx+c﹣1=0有两个相等的实数根.其中正确结论的序号是( )
A.①③B.②④C.③④D.②③
13.(2023•齐齐哈尔)如图,二次函数y=ax2+bx+c(a≠0)的图象与y轴的交点在(0,1)与(0,2)之间,对称轴为x=﹣1,函数最大值为4,结合图象给出下列结论:①b=2a;②﹣3<a<﹣2;③4ac﹣b2<0;④若关于x的一元二次方程ax2+bx+a=m﹣4(a≠0)有两个不相等的实数根,则m>4;⑤当x<0时,y随x的增大而减小.其中正确的结论有( )
A.2个B.3个C.4个D.5个
14.(2023•雅安)抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为( )
①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.
A.②③④B.①②④C.①③D.①②③④
15.(2023•广元)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)abc<0;(2)4a+c>2b;(3)3b﹣2c>0;(4)若点A(﹣2,y1)、点B(−12,y2)、点C(72,y3)在该函数图象上,则y1<y3<y2;(5)4a+2b≥m(am+b)(m为常数).其中正确的结论有( )
A.5个B.4个C.3个D.2个
16.(2023•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(1,0),有下列结论:
①2a+b<0;②当x>1时,y随x的增大而增大;
③关于x的方程ax2+bx+(b+c)=0有两个不相等的实数根.
其中,正确结论的个数是( )
A.0B.1C.2D.3
17.(2023•自贡)已知A(﹣3,﹣2),B(1,﹣2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:
①c≥﹣2;
②当x>0时,一定有y随x的增大而增大;
③若点D横坐标的最小值为﹣5,则点C横坐标的最大值为3;
④当四边形ABCD为平行四边形时,a=12.
其中正确的是( )
A.①③B.②③C.①④D.①③④
18.(2023•贵港)已知二次函数y=ax2+bx+c(a≠0)图象的一部分如图所示,该函数图象经过点(﹣2,0),对称轴为直线x=−12.对于下列结论:①abc<0;②b2﹣4ac>0;③a+b+c=0;④am2+bm<14(a﹣2b)(其中m≠−12);⑤若A(x1,y1)和B(x2,y2)均在该函数图象上,且x1>x2>1,则y1>y2.其中正确结论的个数共有 个.
19.(2023•武汉)已知抛物线y=ax2+bx+c(a,b,c是常数)开口向下,过A(﹣1,0),B(m,0)两点,且1<m<2.下列四个结论:
①b>0;
②若m=32,则3a+2c<0;
③若点M(x1,y1),N(x2,y2)在抛物线上,x1<x2,且x1+x2>1,则y1>y2;
④当a≤﹣1时,关于x的一元二次方程ax2+bx+c=1必有两个不相等的实数根.
其中正确的是 (填写序号).
类型四 旋转中的多结论问题
20.(2023•丹东)如图,在四边形ABCD中,AB∥CD,AB=CD,对角线AC与BD交于点O,点E是AD的中点,连接OE,△ABD的周长为12cm,则下列结论错误的是( )
A.OE∥AB
B.四边形ABCD是中心对称图形
C.△EOD的周长等于3cm
D.若∠ABC=90°,则四边形ABCD是轴对称图形
21.(2023•益阳)如图,已知△ABC中,∠CAB=20°,∠ABC=30°,将△ABC绕A点逆时针旋转50°得到△AB′C′,以下结论:①BC=B′C′,②AC∥C′B′,③C′B′⊥BB′,④∠ABB′=∠ACC′,正确的有( )
A.①②③B.①②④C.①③④D.②③④
22.(2023•常德)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A,B的对应点分别是D,E,点F是边AC的中点,连接BF,BE,FD.则下列结论错误的是( )
A.BE=BCB.BF∥DE,BF=DE
C.∠DFC=90°D.DG=3GF
23.(2023•天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )
A.AB=ANB.AB∥NCC.∠AMN=∠ACND.MN⊥AC
类型五 圆中的多结论问题
24.(2023•十堰)如图,⊙O是等边△ABC的外接圆,点D是弧AC上一动点(不与A,C重合),下列结论:①∠ADB=∠BDC;②DA=DC;③当DB最长时,DB=2DC;④DA+DC=DB,其中一定正确的结论有( )
A.1个B.2个C.3个D.4个
25.(2023•德阳)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,与BC相交于点G,则下列结论:①∠BAD=∠CAD;②若∠BAC=60°,则∠BEC=120°;③若点G为BC的中点,则∠BGD=90°;④BD=DE.其中一定正确的个数是( )
A.1B.2C.3D.4
类型六 反比例函数中的多结论问题
26.(2023•武汉)已知点A(x1,y1),B(x2,y2)在反比例函数y=6x的图象上,且x1<0<x2,则下列结论一定正确的是( )
A.y1+y2<0B.y1+y2>0C.y1<y2D.y1>y2
27.(2023•玉林)如图,点A在双曲线y=kx(k>0,x>0)上,点B在直线l:y=mx﹣2b(m>0,b>0)上,A与B关于x轴对称,直线l与y轴交于点C,当四边形AOCB是菱形时,有以下结论:
①A(b,3b)
②当b=2时,k=43
③m=33
④S四边形AOCB=2b2
则所有正确结论的序号是 .
类型七 相似三角形中的多结论问题
28.(2023•东营)如图,已知菱形ABCD的边长为2,对角线AC、BD相交于点O,点M,N分别是边BC、CD上的动点,∠BAC=∠MAN=60°,连接MN、OM.以下四个结论正确的是( )
①△AMN是等边三角形;
②MN的最小值是3;
③当MN最小时S△CMN=18S菱形ABCD;
④当OM⊥BC时,OA2=DN•AB.
A.①②③B.①②④C.①③④D.①②③④
29.(2023•扬州)如图,在△ABC中,AB<AC,将△ABC以点A为中心逆时针旋转得到△ADE,点D在BC边上,DE交AC于点F.下列结论:①△AFE∽△DFC;②DA平分∠BDE;③∠CDF=∠BAD,其中所有正确结论的序号是( )
A.①②B.②③C.①③D.①②③
30.(2023•遂宁)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是( )
①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;
A.①③B.①②③C.②③D.①②④
31.(2023•娄底)如图,已知等腰△ABC的顶角∠BAC的大小为θ,点D为边BC上的动点(与B、C不重合),将AD绕点A沿顺时针方向旋转θ角度时点D落在D′处,连接BD′.给出下列结论:
①△ACD≌△ABD′;
②△ACB∽△ADD′;
③当BD=CD时,△ADD′的面积取得最小值.
其中正确的结论有 (填结论对应的应号).
32.(2023•黔东南州)如图,校园内有一株枯死的大树AB,距树12米处有一栋教学楼CD,为了安全,学校决定砍伐该树,站在楼顶D处,测得点B的仰角为45°,点A的俯角为30°.小青计算后得到如下结论:①AB≈18.8米;②CD≈8.4米;③若直接从点A处砍伐,树干倒向教学楼CD方向会对教学楼有影响;④若第一次在距点A的8米处的树干上砍伐,不会对教学楼CD造成危害.其中正确的是 .(填写序号,参考数值:3≈1.7,2≈1.4)
专题1 选择题的压轴题多结论问题2022中考真题专项训练(解析版)
类型一 四边形中的多结论问题
1.(2023•恩施州)如图,在四边形ABCD中,∠A=∠B=90°,AD=10cm,BC=8cm,点P从点D出发,以1cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )
A.当t=4s时,四边形ABMP为矩形
B.当t=5s时,四边形CDPM为平行四边形
C.当CD=PM时,t=4s
D.当CD=PM时,t=4s或6s
思路引领:根据题意,表示出DP,BM,AP和CM的长,当四边形ABMP为矩形时,根据AP=BM,列方程求解即可;当四边形CDPM为平行四边形,根据DP=CM,列方程求解即可;当CD=PM时,分两种情况:①四边形CDPM是平行四边形,②四边形CDPM是等腰梯形,分别列方程求解即可.
解:根据题意,可得DP=tcm,BM=tcm,
∵AD=10cm,BC=8cm,
∴AP=(10﹣t)cm,CM=(8﹣t)cm,
当四边形ABMP为矩形时,AP=BM,
即10﹣t=t,
解得t=5,
故A选项不符合题意;
当四边形CDPM为平行四边形,DP=CM,
即t=8﹣t,
解得t=4,
故B选项不符合题意;
当CD=PM时,分两种情况:
①四边形CDPM是平行四边形,
此时CM=PD,
即8﹣t=t,
解得t=4,
②四边形CDPM是等腰梯形,
过点M作MG⊥AD于点G,过点C作CH⊥AD于点H,如图所示:
则∠MGP=∠CHD=90°,
∵PM=CD,GM=HC,
∴△MGP≌△CHD(HL),
∴GP=HD,
∵AG=AP+GP=10﹣t+t−(8−t)2,
又∵BM=t,
∴10﹣t+t−(8−t)2=t,
解得t=6,
综上,当CD=PM时,t=4s或6s,
故C选项不符合题意,D选项符合题意,
故选:D.
总结提升:本题考查了矩形的判定,平行四边形的判定,全等三角形的判定和性质,涉及动点问题,用含t的代数式表示出各线段的长是解题的关键.
2.(2023•攀枝花)如图,以△ABC的三边为边在BC上方分别作等边△ACD、△ABE、△BCF.且点A在△BCF内部.给出以下结论:①四边形ADFE是平行四边形;②当∠BAC=150°时,四边形ADFE是矩形;③当AB=AC时,四边形ADFE是菱形;④当AB=AC,且∠BAC=150°时,四边形ADFE是正方形.其中正确结论有 (填上所有正确结论的序号).
思路引领:①利用SAS证明△EFB≌△ACB,得出EF=AC=AD;同理由△CDF≌△CAB,得DF=AB=AE;根据两边分别相等的四边形是平行四边形得出四边形ADFE是平行四边形,即可判断结论①正确;
②当∠BAC=150°时,求出∠EAD=90°,根据有一个角是90°的平行四边形是矩形即可判断结论②正确;
③先证明AE=AD,根据一组邻边相等的平行四边形是菱形即可判断结论③正确;
④根据正方形的判定:既是菱形,又是矩形的四边形是正方形即可判断结论④正确.
解:①∵△ABE、△CBF是等边三角形,
∴BE=AB,BF=CB,∠EBA=∠FBC=60°;
∴∠EBF=∠ABC=60°﹣∠ABF;
∴△EFB≌△ACB(SAS);
∴EF=AC=AD;
同理由△CDF≌△CAB,得DF=AB=AE;
由AE=DF,AD=EF即可得出四边形ADFE是平行四边形,故结论①正确;
②当∠BAC=150°时,∠EAD=360°﹣∠BAE﹣∠BAC﹣∠CAD=360°﹣60°﹣150°﹣60°=90°,
由①知四边形AEFD是平行四边形,
∴平行四边形ADFE是矩形,故结论②正确;
③由①知AB=AE,AC=AD,四边形AEFD是平行四边形,
∴当AB=AC时,AE=AD,
∴平行四边形AEFD是菱形,故结论③正确;
④综合②③的结论知:当AB=AC,且∠BAC=150°时,四边形AEFD既是菱形,又是矩形,
∴四边形AEFD是正方形,故结论④正确.
故答案为:①②③④.
总结提升:本题考查了平行四边形及矩形、菱形、正方形的判定,等边三角形的性质,全等三角形的判定与性质,熟练掌握特殊四边形的判定方法和性质是解答此题的关键.
类型二 一次函数中的多结论问题
3.(2023•攀枝花)中国人逢山开路,遇水架桥,靠自己勤劳的双手创造了世界奇迹.雅西高速是连接雅安和西昌的高速公路,被国内外专家学者公认为全世界自然环境最恶劣、工程难度最大、科技含量最高的山区高速公路之一,全长240km.一辆货车和一辆轿车先后从西昌出发驶向雅安,如图,线段OM表示货车离西昌距离y1(km)与时间x(h)之间的函数关系:折线OABN表示轿车离西昌距离y2(km)与时间x(h)之间的函数关系,则以下结论错误的是( )
A.货车出发1.8小时后与轿车相遇
B.货车从西昌到雅安的速度为60km/h
C.轿车从西昌到雅安的速度为110km/h
D.轿车到雅安20分钟后,货车离雅安还有20km
思路引领:根据“速度=路程÷时间”分别求出两车的速度,进而得出轿车出发的时间,再对各个选项逐一判断即可.
解:由题意可知,
货车从西昌到雅安的速度为:240÷4=60(km/h),故选项B不合题意;
轿车从西昌到雅安的速度为:(240﹣75)÷(3﹣1.5)=110(km/h),故选项C不合题意;
轿车从西昌到雅安所用时间为:240÷110=2211(小时),
3−2211=911(小时),
设货车出发x小时后与轿车相遇,根据题意得:
60x=110(x−911),
解得x=1.8,
∴货车出发1.8小时后与轿车相遇,故选项A不合题意;
轿车到雅安20分钟后,货车离雅安还有60×60−2060=40(km),故选项D符合题意.
故选:D.
总结提升:此题为一次函数的应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.
4.(2023•赤峰)已知王强家、体育场、学校在同一直线上,下面的图象反映的过程是:某天早晨,王强从家跑步去体育场锻炼,锻炼结束后,步行回家吃早餐,饭后骑自行车到学校.图中x表示时间,y表示王强离家的距离.则下列结论正确的是 ①③④ .(填写所有正确结论的序号)
①体育场离王强家2.5km
②王强在体育场锻炼了30min
③王强吃早餐用了20min
④王强骑自行车的平均速度是0.2km/min
思路引领:利用图象中的信息对每个结论进行逐一判断即可.
解:由图象中的折线中的第一段可知:王强家距离体育场2.5千米,用时15分钟跑步到达,
∴①的结论正确;
由图象中的折线中的第二段可知:王强从第15分钟开始锻炼,第30分钟结束,
∴王强锻炼的时间为:30﹣15=15(分钟),
∴②的结论不正确;
由图象中的折线中的第三段可知:王强从第30中开始回家,第67分钟到家;
由图象中的折线中的第四段可知:王强从第67分钟开始吃早餐,第87分钟结束,
∴王强吃早餐用时:87﹣67=20(分钟),
∴③的结论正确;
由图象中的折线中的第五段可知:王强从第87分钟开始骑车去往3千米外的学校,第102分钟到达学校,
∴王强骑自行车用时为:102﹣87=15(分钟),
∴王强骑自行车的平均速度是:3÷15=0.2(km/min)
∴④的结论正确.
综上,结论正确的有:①③④,
故答案为:①③④.
总结提升:本题主要考查了函数的图象,从函数的图象中正确的获取信息是解题的关键.
类型三 二次函数中的多结论问题
5.(2023•内蒙古)如图,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣1,0),抛物线的对称轴为直线x=1,下列结论:①abc<0;②3a+c=0;③当y>0时,x的取值范围是﹣1≤x<3;④点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是( )
A.1个B.2个C.3个D.4个
思路引领:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解:根据函数的对称性,抛物线与x轴的另外一个交点的坐标为(3,0);
①函数对称轴在y轴右侧,则ab<0,而c已经修改>0,故abc<0,
故①正确,符合题意;
②∵x=−b2a=1,即b=﹣2a,
而x=﹣1时,y=0,即a﹣b+c=0,
∴a+2a+c=0,
∴3a+c=0.
∴②正确,符合题意;
③由图象知,当y>0时,x的取值范围是﹣1<x<3,
∴③错误,不符合题意;
④从图象看,当x=﹣2时,y1<0,
当x=2时,y2>0,
∴有y1<0<y2,
故④正确,符合题意;
故选:C.
总结提升:本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.
6.(2023•巴中)函数y=|ax2+bx+c|(a>0,b2﹣4ac>0)的图象是由函数y=ax2+bx+c(a>0,b2﹣4ac>0)的图象x轴上方部分不变,下方部分沿x轴向上翻折而成,如图所示,则下列结论正确的是( )
①2a+b=0;
②c=3;
③abc>0;
④将图象向上平移1个单位后与直线y=5有3个交点.
A.①②B.①③C.②③④D.①③④
思路引领:根据函数图象与x轴交点的横坐标求出对称轴为−b2a=1,进而可得2a+b=0,由图象可得抛物线y=ax2+bx+c与y轴交点在x轴下方,由抛物线y=ax2+bx+c的开口方向,对称轴位置和抛物线与y轴交点位置可得abc的符号,求出二次函数y=ax2+bx+c的顶点式,可得图象向上平移1个单位后与直线y=5有3个交点
解:∵图象经过(﹣1,0),(3,0),
∴抛物线y=ax2+bx+c的对称轴为直线x=1,
∴−b2a=1,
∴b=﹣2a,即2a+b=0,①正确.
由图象可得抛物线y=ax2+bx+c与y轴交点在x轴下方,
∴c<0,②错误.
由抛物线y=ax2+bx+c的开口向上可得a>0,
∴b=﹣2a<0,
∴abc>0,③正确.
设抛物线y=ax2+bx+c的解析式为y=a(x+1)(x﹣3),
代入(0,3)得:3=﹣3a,
解得:a=﹣1,
∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,
∴顶点坐标为(1,4),
∵点(1,4)向上平移1个单位后的坐标为(1,5),
∴将图象向上平移1个单位后与直线y=5有3个交点,故④正确;
故选:D.
总结提升:本题考查了二次函数的图象和性质,掌握二次函数的对称轴公式,顶点坐标的求法是解题的关键.
7.(2023•资阳)如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是( )
A.4个B.3个C.2个D.1个
思路引领:①:根据二次函数的对称轴−b2a=−1,c=1,即可判断出abc>0;
②:结合图象发现,当x=﹣1时,函数值大于1,代入即可判断;
③:结合图象发现,当x=1时,函数值小于0,代入即可判断;
④:运用待定系数法求出二次函数解析式,再利用二次函数的对称性即可判断.
解:∵二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1),
∴−b2a=−1,c=1,
∴ab>0,
∴abc>0,故①正确;
从图中可以看出,当x=﹣1时,函数值大于1,
因此将x=﹣1代入得,(﹣1)2⋅a+(﹣1)⋅b+c>1,
即a﹣b+c>1,故②正确;
∵−b2a=−1,
∴b=2a,
从图中可以看出,当x=1时,函数值小于0,
∴a+b+c<0,
∴3a+c<0,故③正确;
∵二次函数y=ax2+bx+c的顶点坐标为(﹣1,2),
∴设二次函数的解析式为y=a(x+1)2+2,
将(0,1)代入得,1=a+2,
解得a=﹣1,
∴二次函数的解析式为y=﹣(x+1)2+2,
∴当x=1时,y=﹣2;
∴根据二次函数的对称性,得到﹣3≤m≤﹣1,故④正确;
综上所述,①②③④均正确,故有4个正确结论,
故选A.
总结提升:本题考查了二次函数的图象和性质,待定系数法求二次函数解析式等,熟练掌握二次函数的图象和性质是本题的关键.
8.(2023•丹东)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,结合图象分析如下结论:①abc>0;②b+3a<0;③当x>0时,y随x的增大而增大;④若一次函数y=kx+b(k≠0)的图象经过点A,则点E(k,b)在第四象限;⑤点M是抛物线的顶点,若CM⊥AM,则a=66.其中正确的有( )
A.1个B.2个C.3个D.4个
思路引领:①正确,根据抛物线的位置判断即可;
②正确,利用对称轴公式,可得b=﹣4a,可得结论;
③错误,应该是x>2时,y随x的增大而增大;
④正确,判断出k>0,可得结论;
⑤正确,设抛物线的解析式为y=a(x+1)(x﹣5)=a(x﹣2)2﹣9a,可得M(2,﹣9a),C(0,﹣5a),过点M作MH⊥y轴于点H,设对称轴交x轴于点K.利用相似三角形的性质,构建方程求出a即可.
解:∵抛物线开口向上,
∴a>0,
∵对称轴是直线x=2,
∴−b2a=2,
∴b=﹣4a<0
∵抛物线交y轴的负半轴,
∴c<0,
∴abc>0,故①正确,
∵b=﹣4a,a>0,
∴b+3a=﹣a<0,故②正确,
观察图象可知,当0<x≤2时,y随x的增大而减小,故③错误,
一次函数y=kx+b(k≠0)的图象经过点A,
∵b<0,
∴k>0,此时E(k,b)在第四象限,故④正确.
∵抛物线经过(﹣1,0),(5,0),
∴可以假设抛物线的解析式为y=a(x+1)(x﹣5)=a(x﹣2)2﹣9a,
∴M(2,﹣9a),C(0,﹣5a),
过点M作MH⊥y轴于点H,设对称轴交x轴于点K.
∵AM⊥CM,
∴∠AMC=∠KMH=90°,
∴∠CMH=∠KMA,
∵∠MHC=∠MKA=90°,
∴△MHC∽△MKA,
∴MHMK=CHAK,
∴29a=4a3,
∴a2=16,
∵a>0,
∴a=66,故⑤正确,
故选:D.
总结提升:本题考查二次函数的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考选择题中的压轴题.
9.(2023•日照)已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为x=32,且经过点(﹣1,0).下列结论:①3a+b=0;②若点(12,y1),(3,y2)是抛物线上的两点,则y1<y2;③10b﹣3c=0;④若y≤c,则0≤x≤3.其中正确的有( )
A.1个B.2个C.3个D.4个
思路引领:由对称轴为x=32即可判断①;根据点(12,y1),(3,y2)到对称轴的距离即可判断②;由抛物线经过点(﹣1,0),得出a﹣b+c=0,对称轴x=−b2a=32,得出a=−13b,代入即可判断③;根据二次函数的性质以及抛物线的对称性即可判断④.
解:∵对称轴x=−b2a=32,
∴b=﹣3a,
∴3a+b=0,①正确;
∵抛物线开口向上,点(12,y1)到对称轴的距离小于点(3,y2)的距离,
∴y1<y2,故②正确;
∵经过点(﹣1,0),
∴a﹣b+c=0,
∵对称轴x=−b2a=32,
∴a=−13b,
∴−13b﹣b+c=0,
∴3c=4b,
∴4b﹣3c=0,故③错误;
∵对称轴x=32,
∴点(0,c)的对称点为(3,c),
∵开口向上,
∴y≤c时,0≤x≤3.故④正确;
故选:C.
总结提升:本题考查了二次函数的性质及二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.
10.(2023•荆门)抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若x0>﹣4,则y0>c.其中正确结论的个数为( )
A.1个B.2个C.3个D.4个
思路引领:根据抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)且c>0,即可判断开口向下,即可判断①;根据二次函数的性质即可判断②;根据抛物线的对称性即可判断③;根据抛物线的对称性以及二次函数的性质即可判断④.
解:∵抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2),且c>0,
∴抛物线开口向下,则a<0,故①正确;
∵抛物线开口向下,对称轴为x=﹣2,
∴函数的最大值为4a﹣2b+c,
∴对任意实数m都有:am2+bm+c≤4a﹣2b+c,即am2+bm≤4a﹣2b,故②错误;
∵对称轴为x=﹣2,c>0.
∴当x=﹣4时的函数值大于0,即16a﹣4b+c>0,
∴16a+c>4b,故③正确;
∵对称轴为x=﹣2,点(0,c)的对称点为(﹣4,c),
∵抛物线开口向下,
∴若﹣4<x0<0,则y0>c,故④错误;
故选:B.
总结提升:本题考查二次函数图象与系数的关系,解题关键是掌握二次函数与方程及不等式的关系,掌握二次函数的性质.
11.(2023•牡丹江)如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,并与x轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②(a+c)2﹣b2=0;③9a+4c<0;④若m为任意实数,则am2+bm+2b≥4a,正确的个数是( )
A.1B.2C.3D.4
思路引领:根据函数图象的开口方向、对称轴、图象与y轴的交点即可判断①;根据对称轴x=﹣2,OA=5OB,可得OA=5,OB=1,点A(﹣5,0),点B(1,0),当x=1时,y=0即可判断②;根据对称轴x=﹣2,以及,a+b+c=0得a与c的关系,即可判断③;根据函数的最小值是当x=﹣2时,y=4a﹣2b+c,即可判断④;
解:①观察图象可知:a>0,b>0,c<0,
∴abc<0,故①错误;
②∵对称轴为直线x=﹣2,OA=5OB,
可得OA=5,OB=1,
∴点A(﹣5,0),点B(1,0),
∴当x=1时,y=0,即a+b+c=0,
∴(a+c)2﹣b2=(a+b+c)(a+c﹣b)=0,故②正确;
③抛物线的对称轴为直线x=﹣2,即−b2a=−2,
∴b=4a,
∵a+b+c=0,
∴5a+c=0,
∴c=﹣5a,
∴9a+4c=﹣11a,
∵a>0,
∴9a+4c<0,故③正确;
④当x=﹣2时,函数有最小值y=4a﹣2b+c,
由am2+bm+c≥4a﹣2b+c,可得am2+bm+2b≥4a,
∴若m为任意实数,则am2+bm+2b≥4a,故④正确;
故选:C.
总结提升:本题考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征,解决本题的关键是掌握二次函数图象与系数的关系.
12.(2023•烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其对称轴为直线x=−12,且与x轴的一个交点坐标为(﹣2,0).下列结论:①abc>0;②a=b;③2a+c=0;④关于x的一元二次方程ax2+bx+c﹣1=0有两个相等的实数根.其中正确结论的序号是( )
A.①③B.②④C.③④D.②③
思路引领:根据对称轴、开口方向、与y轴的交点位置即可判断a、b、c与0的大小关系,然后将由对称轴可知a=b.图象过(﹣2,0)代入二次函数中可得4a﹣2b+c=0.再由二次函数最小值小于0,从而可判断ax2+bx+c=1有两个不相同的解.
解:①由图可知:a>0,c<0,−b2a<0,
∴b>0,
∴abc<0,故①不符合题意.
②由题意可知:−b2a=−12,
∴b=a,故②符合题意.
③将(﹣2,0)代入y=ax2+bx+c,
∴4a﹣2b+c=0,
∵a=b,
∴2a+c=0,故③符合题意.
④由图象可知:二次函数y=ax2+bx+c的最小值小于0,
令y=1代入y=ax2+bx+c,
∴ax2+bx+c=1有两个不相同的解,故④不符合题意.
故选:D.
总结提升:本题考查二次函数的图像与系数的关系,解题的关键是正确地由图象得出a、b、c的数量关系,本题属于基础题型.
13.(2023•齐齐哈尔)如图,二次函数y=ax2+bx+c(a≠0)的图象与y轴的交点在(0,1)与(0,2)之间,对称轴为x=﹣1,函数最大值为4,结合图象给出下列结论:①b=2a;②﹣3<a<﹣2;③4ac﹣b2<0;④若关于x的一元二次方程ax2+bx+a=m﹣4(a≠0)有两个不相等的实数根,则m>4;⑤当x<0时,y随x的增大而减小.其中正确的结论有( )
A.2个B.3个C.4个D.5个
思路引领:由抛物线对称轴为直线x=﹣1可判断①,由抛物线顶点坐标可得a与c的关系,由抛物线与y轴交点位置可判断c的取值范围,从而判断②,由抛物线与x轴交点个数可判断③,由抛物线与直线y=m交点个数判断④,由图象可得x<﹣1时,y随x增大而增大,从而判断⑤.
解:∵抛物线对称轴为直线x=−b2a=−1,
∴b=2a,①正确.
∵抛物线经过(﹣1,4),
∴a﹣b+c=﹣a+c=4,
∴a=c﹣4,
∵抛物线与y轴交点在(0,1)与(0,2)之间,
∴1<c<2,
∴﹣3<a<﹣2,②正确.
∵抛物线与x轴有2个交点,
∴b2﹣4ac>0,即4ac﹣b2<0,③正确.
∵a=c﹣4,
∴ax2+bx+a=m﹣4可整理为ax2+bx+c=m,
∵抛物线开口向下,顶点坐标为(﹣1,4),
∴m<4时,抛物线与直线y=m有两个不同交点,④错误.
由图象可得x<﹣1时y随x增大而增大,
∴⑤错误.
故选:B.
总结提升:本题考查二次函数图象与系数的关系,解题关键是掌握二次函数与方程及不等式的关系.
14.(2023•雅安)抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为( )
①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.
A.②③④B.①②④C.①③D.①②③④
思路引领:由抛物线解析式可得抛物线顶点坐标,从而可判断①②,由二次函数图象平移的规律可判断③,令y=0可得抛物线与x轴交点横坐标,从而判断④.
解:∵y=(x﹣2)2﹣9,
∴抛物线对称轴为直线x=2,抛物线开口向上,顶点坐标为(2,﹣9),
∴x=2时,y取最小值﹣9,①正确.
∵x>2时,y随x增大而增大,
∴y2>y1,②正确.
将函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x+1)2﹣5,③错误.
令(x﹣2)2﹣9=0,
解得x1=﹣1,x2=5,
∴5﹣(﹣1)=6,④正确.
故选:B.
总结提升:本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程及不等式的关系.
15.(2023•广元)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)abc<0;(2)4a+c>2b;(3)3b﹣2c>0;(4)若点A(﹣2,y1)、点B(−12,y2)、点C(72,y3)在该函数图象上,则y1<y3<y2;(5)4a+2b≥m(am+b)(m为常数).其中正确的结论有( )
A.5个B.4个C.3个D.2个
思路引领:根据抛物线的对称轴方程和开口方向以及与y轴的交点,可得a<0,b>0,c>0,由对称轴为直线x=2,可得b=﹣4a,当x=2时,函数有最大值4a+2b+c;由经过点(﹣1,0),可得a﹣b+c=0,c=﹣5a;再由a<0,可知图象上的点离对称轴越近对应的函数值越大;再结合所给选项进行判断即可.
解:∵抛物线的开口向下,
∴a<0,
∵抛物线的对称轴为直线x=−b2a=2,
∴b>0,
∵抛物线交y轴的正半轴,
∴c>0,
∴abc<0,所以(1)正确;
∵对称轴为直线x=2,
∴−b2a=2,
∴b=﹣4a,
∴b+4a=0,
∴b=﹣4a,
∵经过点(﹣1,0),
∴a﹣b+c=0,
∴c=b﹣a=﹣4a﹣a=﹣5a,
∴4a+c﹣2b=4a﹣5a+8a=7a,
∵a<0,
∴4a+c﹣2b<0,
∴4a+c<2b,故(2)不正确;
∵3b﹣2c=﹣12a+10a=﹣2a>0,故(3)正确;
∵|﹣2﹣2|=4,|−12−2|=52,|72−2|=32,
∴y1<y2<y3,故(4)错误;
当x=2时,函数有最大值4a+2b+c,
∴4a+2b+c≥am2+bm+c,
4a+2b≥m(am+b)(m为常数),故(5)正确;
综上所述:正确的结论有(1)(3)(5),共3个,
故选:C.
总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质是解题的关键.
16.(2023•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(1,0),有下列结论:
①2a+b<0;
②当x>1时,y随x的增大而增大;
③关于x的方程ax2+bx+(b+c)=0有两个不相等的实数根.
其中,正确结论的个数是( )
A.0B.1C.2D.3
思路引领:根据抛物线y=ax2+bx+c经过点(1,0)、结合题意判断①;根据抛物线的对称性判断②;根据一元二次方程根的判别式判断③.
解:①∵抛物线y=ax2+bx+c经过点(1,0),
∴a+b+c=0,
∵a<c,
∴a+b+a<0,即2a+b<0,本小题结论正确;
②∵a+b+c=0,0<a<c,
∴b<0,
∴对称轴x=−b2a>1,
∴当1<x<−b2a时,y随x的增大而减小,本小题结论错误;
③∵a+b+c=0,
∴b+c=﹣a,
对于方程ax2+bx+(b+c)=0,Δ=b2﹣4×a×(b+c)=b2+4a2>0,
∴方程ax2+bx+(b+c)=0有两个不相等的实数根,本小题结论正确;
故选:C.
总结提升:本题考查的是二次函数图象与系数的关系、一元二次方程根的判别式、抛物线与x轴的交点,熟记二次函数的对称轴、增减性以及一元二次方程根的判别式是解题的关键.
17.(2023•自贡)已知A(﹣3,﹣2),B(1,﹣2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:
①c≥﹣2;
②当x>0时,一定有y随x的增大而增大;
③若点D横坐标的最小值为﹣5,则点C横坐标的最大值为3;
④当四边形ABCD为平行四边形时,a=12.
其中正确的是( )
A.①③B.②③C.①④D.①③④
思路引领:根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,得到①正确;当顶点运动到y轴右侧时,根据二次函数的增减性判断出②错误;当顶点在A点时,D能取到最小值,当顶点在B点时,C能取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,即可判断③正确;令y=0,利用根与系数的关系与顶点的纵坐标求出CD的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,判断出④正确.
解:∵点A,B的坐标分别为(﹣3,﹣2)和(1,﹣2),
∴线段AB与y轴的交点坐标为(0,﹣2),
又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c),
∴c≥﹣2,(顶点在y轴上时取“=”),故①正确;
∵抛物线的顶点在线段AB上运动,开口向上,
∴当x>1时,一定有y随x的增大而增大,故②错误;
若点D的横坐标最小值为﹣5,则此时对称轴为直线x=﹣3,C点的横坐标为﹣1,则CD=4,
∵抛物线形状不变,当对称轴为直线x=1时,C点的横坐标为3,
∴点C的横坐标最大值为3,故③正确;
令y=0,则ax2+bx+c=0,
CD2=(−ba)2﹣4×ca=b2−4aca2,
根据顶点坐标公式,4ac−b24a=−2,
∴4ac−b2a=−8,即b2−4aca=8,
∴CD2=1a×8=8a,
∵四边形ABCD为平行四边形,
∴CD=AB=1﹣(﹣3)=4,
∴8a=42=16,
解得a=12,故④正确;
综上所述,正确的结论有①③④.
故选:D.
总结提升:本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,①要注意顶点在y轴上的情况.
18.(2023•贵港)已知二次函数y=ax2+bx+c(a≠0)图象的一部分如图所示,该函数图象经过点(﹣2,0),对称轴为直线x=−12.对于下列结论:①abc<0;②b2﹣4ac>0;③a+b+c=0;④am2+bm<14(a﹣2b)(其中m≠−12);⑤若A(x1,y1)和B(x2,y2)均在该函数图象上,且x1>x2>1,则y1>y2.其中正确结论的个数共有 3 个.
思路引领:根据抛物线与x轴的一个交点(﹣2,0)以及其对称轴,求出抛物线与x轴的另一个交点(1,0),利用待定系数法求函数解析式,再根据抛物线开口朝下,可得a<0,进而可得b<0,c>0,再结合二次函数的图象和性质逐条判断即可.
解:∵抛物线的对称轴为直线x=−12,且抛物线与x轴的一个交点坐标为(﹣2,0),
∴抛物线与x轴的另一个交点坐标为(1,0),
把(﹣2,0)(1,0)代入y=ax2+bx+c(a≠0),可得:
4a−2b+c=0a+b+c=0,
解得b=ac=−2a,
∴a+b+c=a+a﹣2a=0,故③正确;
∵抛物线开口方向向下,
∴a<0,
∴b=a<0,c=﹣2a>0,
∴abc>0,故①错误;
∵抛物线与x轴两个交点,
∴当y=0时,方程ax2+bx+c=0有两个不相等的实数根,
∴b2﹣4ac>0,故②正确;
∵am2+bm=am2+am=a(m+12)2−14a,
14(a﹣2b)=14(a﹣2a)=−14a,
∴am2+bm−14(a﹣2b)=a(m+12)2,
又∵a<0,m≠−12,
∴a(m+12)2<0,
即am2+bm<14(a﹣2b)(其中m≠−12),故④正确;
∵抛物线的对称轴为直线x=−12,且抛物线开口朝下,
∴可知二次函数,在x>−12时,y随x的增大而减小,
∵x1>x2>1>−12,
∴y1<y2,故⑤错误,
正确的有②③④,共3个,
故答案为:3.
总结提升:本题考查了二次函数的图象与性质、二次函数和一元二次方程的关系等知识,掌握二次函数的性质,利用数形结合思想解题是关键.
19.(2023•武汉)已知抛物线y=ax2+bx+c(a,b,c是常数)开口向下,过A(﹣1,0),B(m,0)两点,且1<m<2.下列四个结论:
①b>0;
②若m=32,则3a+2c<0;
③若点M(x1,y1),N(x2,y2)在抛物线上,x1<x2,且x1+x2>1,则y1>y2;
④当a≤﹣1时,关于x的一元二次方程ax2+bx+c=1必有两个不相等的实数根.
其中正确的是 ①③④ (填写序号).
思路引领:①正确.根据对称轴在y轴的右侧,可得结论;
②错误.3a+2c=0;
③正确.由题意,抛物线的对称轴直线x=h,0<h<0.5,由点M(x1,y1),N(x2,y2)在抛物线上,x1<x2,且x1+x2>1,推出点M到对称轴的距离<点N到对称轴的距离,推出y1>y2;
④正确,证明判别式>0即可.
解:∵对称轴x=−1+m2>0,
∴对称轴在y轴右侧,
∴−b2a>0,
∵a<0,
∴b>0,
故①正确;
当m=32时,对称轴x=−b2a=14,
∴b=−a2,
当x=﹣1时,a﹣b+c=0,
∴3a2+c=0,
∴3a+2c=0,故②错误;
由题意,抛物线的对称轴直线x=h,0<h<0.5,
∵点M(x1,y1),N(x2,y2)在抛物线上,x1<x2,且x1+x2>1,
∴点M到对称轴的距离<点N到对称轴的距离,
∴y1>y2,故③正确;
设抛物线的解析式为y=a(x+1)(x﹣m),
方程a(x+1)(x﹣m)=1,
整理得,ax2+a(1﹣m)x﹣am﹣1=0,
Δ=[a(1﹣m)]2﹣4a(﹣am﹣1)
=a2(m+1)2+4a,
∵1<m<2,a≤﹣1,
∴Δ>0,
∴关于x的一元二次方程ax2+bx+c=1必有两个不相等的实数根.故④正确,
故答案为:①③④.
总结提升:本题考查二次函数的性质,一元二次方程的根的判别式等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.
类型四 旋转中的多结论问题
20.(2023•丹东)如图,在四边形ABCD中,AB∥CD,AB=CD,对角线AC与BD交于点O,点E是AD的中点,连接OE,△ABD的周长为12cm,则下列结论错误的是( )
A.OE∥AB
B.四边形ABCD是中心对称图形
C.△EOD的周长等于3cm
D.若∠ABC=90°,则四边形ABCD是轴对称图形
思路引领:根据平行四边形的性质及三角形中位线定理判断各个选项即可.
解:∵AB∥CD,AB=CD,
∴四边形ABCD是平行四边形,
∵对角线AC与BD交于点O,点E是AD的中点,
∴OE是△ABD的中位线,
∴OE∥AB,
∴A选项结论正确,不符合题意;
∵四边形ABCD是中心对称图形,
∴B选项结论正确,不符合题意;
∵△ABD的周长为12cm,
∴△EOD的周长等于6cm,
∴C选项结论错误,符合题意;
若∠ABC=90°,则四边形ABCD是矩形,是轴对称图形,
∴D选项结论正确,不符合题意;
故选:C.
总结提升:本题主要考查平行四边形的判定与性质,三角形中位线定理,中心对称图形、轴对称图形、矩形的判定与性质等知识,熟练掌握平行四边形的判定与性质,三角形中位线定理,中心对称图形、轴对称图形、矩形的判定与性质等知识是解题的关键.
21.(2023•益阳)如图,已知△ABC中,∠CAB=20°,∠ABC=30°,将△ABC绕A点逆时针旋转50°得到△AB′C′,以下结论:①BC=B′C′,②AC∥C′B′,③C′B′⊥BB′,④∠ABB′=∠ACC′,正确的有( )
A.①②③B.①②④C.①③④D.②③④
思路引领:根据旋转的性质可得,BC=B′C′∠C′AB′=∠CAB=20°,∠AB′C′=∠ABC=30°,再根据旋转角的度数为50°,通过推理证明对①②③④四个结论进行判断即可.
解:①∵△ABC绕A点逆时针旋转50°得到△AB′C′,
∴BC=B′C′.故①正确;
②∵△ABC绕A点逆时针旋转50°,
∴∠BAB′=50°.
∵∠CAB=20°,
∴∠B′AC=∠BAB′﹣∠CAB=30°.
∵∠AB′C′=∠ABC=30°,
∴∠AB′C′=∠B′AC.
∴AC∥C′B′.故②正确;
③在△BAB′中,
AB=AB′,∠BAB′=50°,
∴∠AB′B=∠ABB′=12(180°﹣50°)=65°.
∴∠BB′C′=∠AB′B+∠AB′C′=65°+30°=95°.
∴C′B′与BB′不垂直.故③不正确;
④在△ACC′中,
AC=AC′,∠CAC′=50°,
∴∠ACC′=12(180°﹣50°)=65°.
∴∠ABB′=∠ACC′.故④正确.
∴①②④这三个结论正确.
故选:B.
总结提升:本题考查了旋转性质的应用,图形的旋转只改变图形的位置,不改变图形的形状与大小.
22.(2023•常德)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A,B的对应点分别是D,E,点F是边AC的中点,连接BF,BE,FD.则下列结论错误的是( )
A.BE=BCB.BF∥DE,BF=DE
C.∠DFC=90°D.DG=3GF
思路引领:根据等边三角形的判定定理得到△BCE为等边三角形,根据等边三角形的性质得到BE=BC,判断A选项;证明△ABC≌△CFD,根据全等三角形的性质判断B、C选项;解直角三角形,用CF分别表示出GF、DF,判断D选项.
解:A、由旋转的性质可知,CB=CE,∠BCE=60°,
∴△BCE为等边三角形,
∴BE=BC,本选项结论正确,不符合题意;
B、在Rt△ABC中,∠ABC=90°,∠ACB=30°,点F是边AC的中点,
∴AB=12AC=CF=BF,
由旋转的性质可知,CA=CD,∠ACD=60°,
∴∠A=∠ACD,
在△ABC和△CFD中,
AB=CF∠A=∠FCDCA=CD,
∴△ABC≌△CFD(SAS),
∴DF=BC=BE,
∵DE=AB=BF,
∴四边形EBFD为平行四边形,
∴BF∥DE,BF=DE,本选项结论正确,不符合题意;
C、∵△ABC≌△CFD,
∴∠DFC=∠ABC=90°,本选项结论正确,不符合题意;
D、在Rt△GFC中,∠GCF=30°,
∴GF=33CF,
同理可得,DF=3CF,
∴DF=3GF,故本选项结论错误,符合题意;
故选:D.
总结提升:本题考查的是旋转变换的性质、全等三角形的判定和性质、直角三角形的性质,正确理解旋转变换的概念是解题的关键.
23.(2023•天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )
A.AB=ANB.AB∥NCC.∠AMN=∠ACND.MN⊥AC
思路引领:根据旋转变换的性质、等边三角形的性质、平行线的性质判断即可.
解:A、∵AB=AC,
∴AB>AM,
由旋转的性质可知,AN=AM,
∴AB>AN,故本选项结论错误,不符合题意;
B、当△ABC为等边三角形时,AB∥NC,除此之外,AB与NC不平行,故本选项结论错误,不符合题意;
C、由旋转的性质可知,∠BAC=∠MAN,∠ABC=∠ACN,
∵AM=AN,AB=AC,
∴∠ABC=∠AMN,
∴∠AMN=∠ACN,本选项结论正确,符合题意;
D、只有当点M为BC的中点时,∠BAM=∠CAM=∠CAN,才有MN⊥AC,故本选项结论错误,不符合题意;
故选:C.
总结提升:本题考查的是旋转变换、等腰三角形的性质、平行线的判定,掌握旋转变换的性质是解题的关键.
类型五 圆中的多结论问题
24.(2023•十堰)如图,⊙O是等边△ABC的外接圆,点D是弧AC上一动点(不与A,C重合),下列结论:①∠ADB=∠BDC;②DA=DC;③当DB最长时,DB=2DC;④DA+DC=DB,其中一定正确的结论有( )
A.1个B.2个C.3个D.4个
思路引领:由△ABC是等边三角形,及同弧所对圆周角相等可得∠ADB=∠BDC,即可判断①正确;由点D是弧AC上一动点,可判断②错误;根据DB最长时,DB为⊙O直径,可判定③正确;在DB上取一点E,使DE=AD,可得△ADE是等边三角形,从而△ABE≌△ACD(SAS),有BE=CD,可判断④正确.
解:∵△ABC是等边三角形,
∴∠BAC=∠ACB=60°,
∵AB=AB,BC=BC,
∴∠ADB=∠ACB=60°,∠BDC=∠BAC=60°,
∴∠ADB=∠BDC,故①正确;
∵点D是弧AC上一动点,
∴AD与CD不一定相等,
∴DA与DC不一定相等,故②错误;
当DB最长时,DB为⊙O直径,
∴∠BCD=90°,
∵∠BDC=60°,
∴∠DBC=30°,
∴DB=2DC,故③正确;
在DB上取一点E,使DE=AD,如图:
∵∠ADB=60°,
∴△ADE是等边三角形,
∴AD=AE,∠DAE=60°,
∵∠BAC=60°,
∴∠BAE=∠CAD,
∵AB=AC,
∴△ABE≌△ACD(SAS),
∴BE=CD,
∴BD=BE+DE=CD+AD,故④正确;
∴正确的有①③④,共3个,
故选:C.
总结提升:本题考查等边三角形及外接圆,涉及三角形全等的判定与性质,解题的关键是作辅助线,构造三角形全等解决问题.
25.(2023•德阳)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,与BC相交于点G,则下列结论:①∠BAD=∠CAD;②若∠BAC=60°,则∠BEC=120°;③若点G为BC的中点,则∠BGD=90°;④BD=DE.其中一定正确的个数是( )
A.1B.2C.3D.4
思路引领:利用三角形内心的性质得到∠BAD=∠CAD,则可对①进行判断;直接利用三角形内心的性质对②进行判断;根据垂径定理则可对③进行判断;通过证明∠DEB=∠DBE得到DB=DE,则可对④进行判断.
解:∵E是△ABC的内心,
∴AD平分∠BAC,
∴∠BAD=∠CAD,故①正确;
如图,连接BE,CE,
∵E是△ABC的内心,
∴∠EBC=12∠ABC,∠ECB=12∠ACB,
∵∠BAC=60°,
∴∠ABC+∠ACB=120°,
∴∠BEC=180°﹣∠EBC﹣∠ECB=180°−12(∠ABC+∠ACB)=120°,故②正确;
∵∠BAD=∠CAD,
∴BD=DC,
∴OD⊥BC,
∵点G为BC的中点,
∴G一定在OD上,
∴∠BGD=90°,故③正确;
如图,连接BE,
∴BE平分∠ABC,
∴∠ABE=∠CBE,
∵∠DBC=∠DAC=∠BAD,
∴∠DBC+∠EBC=∠EBA+∠EAB,
∴∠DBE=∠DEB,
∴DB=DE,故④正确.
∴一定正确的①②③④,共4个.
故选:D.
总结提升:本题考查了三角形的内切圆与内心,圆周角定理,三角形的外接圆与外心,解决本题的关键是掌握三角形的内心与外心.
类型六 反比例函数中的多结论问题
26.(2023•武汉)已知点A(x1,y1),B(x2,y2)在反比例函数y=6x的图象上,且x1<0<x2,则下列结论一定正确的是( )
A.y1+y2<0B.y1+y2>0C.y1<y2D.y1>y2
思路引领:先根据反比例函数y=6x判断此函数图象所在的象限,再根据x1<0<x2判断出A(x1,y1)、B(x2,y2)所在的象限即可得到答案.
解:∵反比例函数y=6x中的6>0,
∴该双曲线位于第一、三象限,且在每一象限内y随x的增大而减小,
∵点A(x1,y1),B(x2,y2)在反比例函数y=6x的图象上,且x1<0<x2,
∴点A位于第三象限,点B位于第一象限,
∴y1<y2.
故选:C.
总结提升:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数的性质是解答此题的关键.
27.(2023•玉林)如图,点A在双曲线y=kx(k>0,x>0)上,点B在直线l:y=mx﹣2b(m>0,b>0)上,A与B关于x轴对称,直线l与y轴交于点C,当四边形AOCB是菱形时,有以下结论:
①A(b,3b)
②当b=2时,k=43
③m=33
④S四边形AOCB=2b2
则所有正确结论的序号是 ②③ .
思路引领:①根据菱形的性质和勾股定理计算点A的坐标;
②根据①中的坐标,直接将b=2代入即可解答;
③计算点B的坐标,代入一次函数的解析式可解答;
④根据菱形的面积=底边×高可解答.
解:如图,
①y=mx﹣2b中,当x=0时,y=﹣2b,
∴C(0,﹣2b),
∴OC=2b,
∵四边形AOCB是菱形,
∴AB=OC=OA=2b,
∵A与B关于x轴对称,
∴AB⊥OD,AD=BD=b,
∴OD=(2b)2−b2=3b,
∴A(3b,b);
故①不正确;
②当b=2时,点A的坐标为(23,2),
∴k=23×2=43,
故②正确;
③∵A(3b,b),A与B关于x轴对称,
∴B(3b,﹣b),
∵点B在直线y=mx﹣2b上,
∴3bm﹣2b=﹣b,
∴m=33,
故③正确;
④菱形AOCB的面积=AB•OD=2b•3b=23b2,
故④不正确;
所以本题结论正确的有:②③;
故答案为:②③.
总结提升:本题是反比例函数和一次函数的交点问题,考查了坐标与图形性质,勾股定理,关于x轴对称,菱形的性质等知识,掌握函数图象上的点满足对应函数的解析式是解本题的关键.
类型七 相似三角形中的多结论问题
28.(2023•东营)如图,已知菱形ABCD的边长为2,对角线AC、BD相交于点O,点M,N分别是边BC、CD上的动点,∠BAC=∠MAN=60°,连接MN、OM.以下四个结论正确的是( )
①△AMN是等边三角形;
②MN的最小值是3;
③当MN最小时S△CMN=18S菱形ABCD;
④当OM⊥BC时,OA2=DN•AB.
A.①②③B.①②④C.①③④D.①②③④
思路引领:由四边形ABCD是菱形得AB=CB=AD=CD,AB∥CD,AC⊥BD,OA=OC,而∠BAC=∠ACD=60°,则△ABC和△ADC都是等边三角形,再证明△BAM≌△CAN,得AM=AN,而∠MAN=60°,则△AMN是等边三角形,可判断①正确;
当AM⊥BC 时,AM的值最小,此时MN的值也最小,由∠AMB=90°,∠ABM=60°,AB=2可求得MA=AM=3,可判断②正确;
当MN的值最小,则BM=CM,可证明DN=CN,根据三角形的中位线定理得MN∥BD,则△CMN∽△CBD,可求得S△CMN=14S△CBD=18S菱形ABCD,可判断③正确;
由CB=CD,BM=CN得CM=DN,再证明△OCM∽△BCO,得CMOC=OCCB,所以OC2=CM•CB,即OA2=DN•AB,可判断④正确.
解:∵四边形ABCD是菱形,
∴AB=CB=AD=CD,AB∥CD,AC⊥BD,OA=OC,
∴∠BAC=∠ACD=60°,
∴△ABC和△ADC都是等边三角形,
∴∠ABM=∠ACN=60°,AB=AC,
∵∠MAN=60°,
∴∠BAM=∠CAN=60°﹣∠CAM,
∴△BAM≌△CAN(ASA),
∴AM=AN,
∴△AMN是等边三角形,
故①正确;
当AM⊥BC 时,AM的值最小,此时MN的值也最小,
∵∠AMB=90°,∠ABM=60°,AB=2,
∴MN=AM=AB•sin60°=2×32=3,
∴MN的最小值是3,
故②正确;
∵AM⊥BC 时,MN的值最小,此时BM=CM,
∴CN=BM=12CB=12CD,
∴DN=CN,
∴MN∥BD,
∴△CMN∽△CBD,
∴S△CMNS△CBD=(CMCB)2=(12)2=14,
∴S△CMN=14S△CBD,
∵S△CBD=12S菱形ABCD,
∴S△CMN=14×12S菱形ABCD=18S菱形ABCD,
故③正确;
∵CB=CD,BM=CN,
∴CB﹣BM=CD﹣CN,
∴CM=DN,
∵OM⊥BC,
∴∠CMO=∠COB=90°,
∵∠OCM=∠BCO,
∴△OCM∽△BCO,
∴CMOC=OCCB,
∴OC2=CM•CB,
∴OA2=DN•AB,
故④正确,
故选:D.
总结提升:此题重点考查菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、锐角三角函数等知识,此题综合性强,难度较大,属于考试题中的拔高区分题.
29.(2023•扬州)如图,在△ABC中,AB<AC,将△ABC以点A为中心逆时针旋转得到△ADE,点D在BC边上,DE交AC于点F.下列结论:①△AFE∽△DFC;②DA平分∠BDE;③∠CDF=∠BAD,其中所有正确结论的序号是( )
A.①②B.②③C.①③D.①②③
思路引领:由旋转的性质得出∠BAC=∠DAE,∠B=∠ADE,AB=AD,∠E=∠C,进而得出∠B=∠ADB,得出∠ADE=∠ADB,得出DA平分∠BDE,可判断结论②符合题意;由∠AFE=∠DFC,∠E=∠C,得出△AFE∽△DFC,可判断结论①符合题意;由∠BAC=∠DAE,得出∠BAD=∠FAE,由相似三角形的性质得出∠FAE=∠CDF,进而得出∠BAD=∠CDF,可判断结论③符合题意;即可得出答案.
解:∵将△ABC以点A为中心逆时针旋转得到△ADE,
∴∠BAC=∠DAE,∠B=∠ADE,AB=AD,∠E=∠C,
∴∠B=∠ADB,
∴∠ADE=∠ADB,
∴DA平分∠BDE,
∴②符合题意;
∵∠AFE=∠DFC,∠E=∠C,
∴△AFE∽△DFC,
∴①符合题意;
∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
∴∠BAD=∠FAE,
∵△AFE∽△DFC,
∴∠FAE=∠CDF,
∴∠BAD=∠CDF,
∴③符合题意;
故选:D.
总结提升:本题考查了旋转的性质,相似三角形的判定与性质,掌握旋转的性质,相似三角形的判定方法是解决问题的关键.
30.(2023•遂宁)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是( )
①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;
A.①③B.①②③C.②③D.①②④
思路引领:由四边形ABCD、四边形BEFG是正方形,可得△ABG≌△CBE(SAS),即得∠BAG=∠BCE,即可证明∠POC=90°,可判断①正确;取AC的中点K,可得AK=CK=OK=BK,即可得∠BOA=∠BCA,从而△OBP∽△CAP,判断②正确,由∠AOC=∠ADC=90°,可得A、O、C、D四点共圆,而AD=CD,故∠AOD=∠DOC=45°,判断④正确,不能证明OB平分∠CBG,即可得答案.
解:∵四边形ABCD、四边形BEFG是正方形,
∴AB=BC,BG=BE,∠ABC=90°=∠GBE,
∴∠ABC+∠CBG=∠GBE+∠CBG,即∠ABG=∠EBC,
∴△ABG≌△CBE(SAS),
∴∠BAG=∠BCE,
∵∠BAG+∠APB=90°,
∴∠BCE+∠APB=90°,
∴∠BCE+∠OPC=90°,
∴∠POC=90°,
∴EC⊥AG,故①正确;
取AC的中点K,如图:
在Rt△AOC中,K为斜边AC上的中点,
∴AK=CK=OK,
在Rt△ABC中,K为斜边AC上的中点,
∴AK=CK=BK,
∴AK=CK=OK=BK,
∴A、B、O、C四点共圆,
∴∠BOA=∠BCA,
∵∠BPO=∠CPA,
∴△OBP∽△CAP,故②正确,
∵∠AOC=∠ADC=90°,
∴∠AOC+∠ADC=180°,
∴A、O、C、D四点共圆,
∵AD=CD,
∴∠AOD=∠DOC=45°,故④正确,
由已知不能证明OB平分∠CBG,故③错误,
故正确的有:①②④,
故选:D.
总结提升:本题考查正方形性质及应用,涉及全等三角形的判定与性质,四点共圆等知识,解题的关键是取AC的中点K,证明AK=CK=OK=BK,从而得到A、B、O、C四点共圆.
31.(2023•娄底)如图,已知等腰△ABC的顶角∠BAC的大小为θ,点D为边BC上的动点(与B、C不重合),将AD绕点A沿顺时针方向旋转θ角度时点D落在D′处,连接BD′.给出下列结论:
①△ACD≌△ABD′;
②△ACB∽△ADD′;
③当BD=CD时,△ADD′的面积取得最小值.
其中正确的结论有 ①②③ (填结论对应的应号).
思路引领:由题意可知AC=AB,AD=AD′,∠CAD=∠BAD′,即可根据SAS判断△ACD≌△ABD′;根据∠BAC=∠D′AD=θ,ACAD=ABAD′,即可判断△ACB∽△ADD′;由△ACB∽△ADD′,得出S△ADD′S△ACB=(ADAC)2,根据等腰三角形三线合一的性质,当BD=CD,则AD⊥BC时,AD最小,△ADD′的面积取得最小值.
解:由题意可知AC=AB,AD=AD′,∠CAD=∠BAD′,
∴△ACD≌△ABD′,故①正确;
∵AC=AB,AD=AD′,∠BAC=∠D′AD=θ,
∴ACAD=ABAD′,
∴△ACB∽△ADD′,故②正确;
∵△ACB∽△ADD′,
∴S△ADD′S△ACB=(ADAC)2,
∵当AD⊥BC时,AD最小,△ADD′的面积取得最小值.
而AB=AC,
∴BD=CD,
∴当BD=CD时,△ADD′的面积取得最小值,故③正确;
故答案为:①②③.
总结提升:本题考查了等腰三角形的性质,三角形全等的判定和性质,三角形相似的判定和性质,垂线段最短以及等腰三角形三线合一的性质,三角形掌握这些性质是解题的关键.
32.(2023•黔东南州)如图,校园内有一株枯死的大树AB,距树12米处有一栋教学楼CD,为了安全,学校决定砍伐该树,站在楼顶D处,测得点B的仰角为45°,点A的俯角为30°.小青计算后得到如下结论:①AB≈18.8米;②CD≈8.4米;③若直接从点A处砍伐,树干倒向教学楼CD方向会对教学楼有影响;④若第一次在距点A的8米处的树干上砍伐,不会对教学楼CD造成危害.其中正确的是 ①③④ .(填写序号,参考数值:3≈1.7,2≈1.4)
思路引领:过点D作DE⊥AB,垂足为E,则AE=DC,DE=AC=12米,在Rt△ADE中,利用锐角三角函数的定义求出AE,DE的长,从而求出CD的长,即可判断②;
再在Rt△BED中,利用锐角三角函数的定义求出BE的长,从而求出AB的长,即可判断①;通过比较AB与AD的长,即可判断③,计算出AB﹣8的值,再和AD的长比较,即可判断④.
解:过点D作DE⊥AB,垂足为E,
则AE=DC,DE=AC=12米,
在Rt△ADE中,∠ADE=30°,
∴AE=DE•tan30°=12×33=43(米),
AD=2AE=83(米),
∴CD=AE=43≈6.8(米),
故②不正确;
在Rt△BED中,BE=DE•tan45°=12(米),
∴AB=AE+BE=12+43≈18.8(米),
故①正确;
∵AD=83≈13.6(米),
∴AB>AD,
∴若直接从点A处砍伐,树干倒向教学楼CD方向会对教学楼有影响,
故③正确;
∵AB﹣8=18.8﹣8=10.8(米),
∴10.8米<13.6米,
若第一次在距点A的8米处的树干上砍伐,不会对教学楼CD造成危害,
故④正确;
∴小青计算后得到如上结论,其中正确的是:①③④,
故答案为:①③④.
总结提升:本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.
2024年中考数学二轮培优专题 重难点 选择压轴题(几何篇)(原卷版+解析版): 这是一份2024年中考数学二轮培优专题 重难点 选择压轴题(几何篇)(原卷版+解析版),共139页。
2024年中考数学二轮培优专题 重难点 选择压轴题(代数篇)(原卷版+解析版): 这是一份2024年中考数学二轮培优专题 重难点 选择压轴题(代数篇)(原卷版+解析版),共160页。
专题01 挑战压轴题--选择题(真题汇编+压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(杭州卷): 这是一份专题01 挑战压轴题--选择题(真题汇编+压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(杭州卷),文件包含01挑战压轴题--选择题真题汇编+压轴特训-2024年中考数学冲刺挑战压轴题专题汇编杭州卷原卷版docx、01挑战压轴题--选择题真题汇编+压轴特训-2024年中考数学冲刺挑战压轴题专题汇编杭州卷解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。