|试卷下载
搜索
    上传资料 赚现金
    中考数学(北京卷)-2024年中考数学第三次模考试
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      数学(全解全析).docx
    • 练习
      数学(参考答案及评分标准).docx
    • 练习
      数学(考试版A4).docx
    • 练习
      数学(答题卡)A4.pdf
    • 练习
      数学(考试版A3).docx
    • 练习
      数学(答题卡)A3.pdf
    中考数学(北京卷)-2024年中考数学第三次模考试01
    中考数学(北京卷)-2024年中考数学第三次模考试02
    中考数学(北京卷)-2024年中考数学第三次模考试03
    中考数学(北京卷)-2024年中考数学第三次模考试01
    中考数学(北京卷)-2024年中考数学第三次模考试02
    中考数学(北京卷)-2024年中考数学第三次模考试03
    中考数学(北京卷)-2024年中考数学第三次模考试01
    中考数学(北京卷)-2024年中考数学第三次模考试02
    中考数学(北京卷)-2024年中考数学第三次模考试03
    中考数学(北京卷)-2024年中考数学第三次模考试01
    中考数学(北京卷)-2024年中考数学第三次模考试02
    中考数学(北京卷)-2024年中考数学第三次模考试03
    中考数学(北京卷)-2024年中考数学第三次模考试01
    中考数学(北京卷)-2024年中考数学第三次模考试02
    中考数学(北京卷)-2024年中考数学第三次模考试01
    还剩21页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学(北京卷)-2024年中考数学第三次模考试

    展开
    这是一份中考数学(北京卷)-2024年中考数学第三次模考试,文件包含数学全解全析docx、数学参考答案及评分标准docx、数学考试版A4docx、数学答题卡A4pdf、数学考试版A3docx、数学答题卡A3pdf等6份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。

    3、三模考试大概在中考前两周左右,三模是中考前的最后一次考前检验。三模学校会有意降低难度,目的是增强考生信心,难度只能是中上水平,主要也是对初中三年的知识做一个系统的检测,让学生知道中考的一个大致体系和结构。
    2024年中考第三次模拟考试
    数学·全解全析
    第Ⅰ卷
    一.选择题(共8小题,满分16分,每小题2分)
    1.(2分)如图所示,该几何体的俯视图是( )
    A.B.C.D.
    【分析】根据从上面看得到的图形是俯视图,可得答案.
    【解答】解:从上面看,是一行两个矩形.
    故选:B.
    2.(2分)风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为( )
    A.0.358×105B.35.8×103C.3.58×105D.3.58×104
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
    【解答】解:35800=3.58×104.
    故选:D.
    3.(2分)数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列数学曲线既是轴对称图形,又是中心对称图形的是( )
    A.B.
    C.D.
    【分析】根据轴对称图形与中心对称图形的概念求解.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
    【解答】解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;
    B.是轴对称图形,不是中心对称图形,故此选项不合题意;
    C.既是中心对称图形,也是轴对称图形,符合题意;
    D.是轴对称图形,不是中心对称图形,故此选项不合题意.
    故选:C.
    4.(2分)如果一个多边形的每个内角都相等,且内角和为2340°,那么这个多边形的一个外角的度数为( )
    A.24°B.30°C.36°D.60°
    【分析】根据多边形的内角和公式为(n﹣2)180°列出方程,求出边数,再根据外角和定理求出这个多边形的一个外角.
    【解答】解:设这个多边形的边数为n,
    根据题意列方程:(n﹣2)180°=2340°,
    解得n=15,
    360°÷15=24°,
    故选:A.
    5.(2分)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是( )
    A.b﹣c>0B.ac>0C.b+c<0D.ab<1
    【分析】根据数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,由此逐一判断各选项即可.
    【解答】解:由数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,
    A、∵﹣2<b<﹣1,0<c<1,∴b﹣c<0,故选项A不符合题意;
    B、∵﹣3<a<﹣2,0<c<1,∴ac<0,故选项B不符合题意;
    C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,故选项C符合题意;
    D、∵﹣3<a<﹣2<b<﹣1,∴ab>1,故选项D不符合题意;
    故选:C.
    6.(2分)如图,一只松鼠先经过第一道门(A,B或C),再经过第二道门(D或E)出去,则松鼠走出笼子的路线是“先经过A门,再经过E门”的概率是( )
    A.B.C.D.
    【分析】画树状图列出所有等可能结果,从中找到松鼠走出笼子的路线是“先经过A门,再经过E门”的结果数,再根据概率公式求解即可.
    【解答】解:画树状图如下:
    共有6种等可能的结果,其中松鼠走出笼子的路线是“先经过A门,再经过E门”的只有1种结果,
    所以松鼠走出笼子的路线是“先经过A门,再经过E门”的概率为,
    故选:D.
    7.(2分)已知关于x的一元二次方程kx2﹣(4k﹣1)x+4k﹣3=0有两个不相等的实数根,则实数k的取值范围是( )
    A.k<B.k>﹣且k≠0
    C.k>﹣D.k<且k≠0
    【分析】根据方程有两个不相等的实数根,得到根的判别式大于0且二次项系数不为0,求出k的范围即可.
    【解答】解:∵关于x的一元二次方程kx2﹣(4k﹣1)x+4k﹣3=0有两个不相等的实数根,
    ∴Δ=(4k﹣1)2﹣4k(4k﹣3)>0且k≠0,
    解得:k且k≠0.
    故选:B.
    8.(2分)在Rt△ABC中,AC=BC,点D为AB中点,∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①;②AE2+BF2=EF2;③;④△DEF始终为等腰直角三角形,其中正确的个数有( )
    A.1个B.2个C.3个D.4个
    【分析】连接CD,根据等腰直角三角形的性质就可以得出△ADE≌△CDF,就可以得出AE=CF,进而得出CE=BF,就有AE+BF=AC,由勾股定理AE2+BF2=EF2,因为S四边形CEDF=S△EDC+S△EDF,得出.
    【解答】解:连接CD,
    ∵AC=BC,
    点D为AB中点,∠ACB=90°,
    ∴.∠A=∠B=∠ACD=∠BCD=45°,∠ADC=∠BDC=90°.
    ∴∠ADE+∠EDC=90°,
    ∵∠EDC+∠FDC=∠GDH=90°,
    ∴∠ADE=CDF.
    在△ADE和△CDF中,

    ∴△ADE≌△CDF(ASA),
    ∴AE=CF,DE=DF,S△ADE=S△CDF.
    ∵AC=BC,
    ∴AC﹣AE=BC﹣CF,
    ∴CE=BF.
    ∵AC=AE+CE,
    ∴AC=AE+BF.
    ∵AC2+BC2=AB2,
    ∴,
    ∴.
    ∵DE=DF,∠GDH=90°,
    ∴△DEF始终为等腰直角三角形.
    ∵CE2+CF2=EF2,
    ∴AE2+BF2=EF2.
    ∵S四边形CEDF=S△EDC+S△EDF,
    ∴.
    ∴正确的有4个.
    故选:D.
    第Ⅱ卷
    二.填空题(共8小题,满分16分,每小题2分)
    9.(2分)若代数式有意义,则实数x的取值范围为 x≠3 .
    【分析】根据分式有意义,分母不等于0列式计算即可得解.
    【解答】解:由题意得,x﹣3≠0,
    解得x≠3.
    故答案为:x≠3.
    10.(2分)因式分解:xy3﹣25xy= xy(x+5)(x﹣5) .
    【分析】先提公因式xy,然后根据平方差公式进行计算即可求解.
    【解答】解:原式=xy(y2﹣25)=xy(y+5)(y﹣5).
    故答案为:xy(y+5)(y﹣5).
    11.(2分)分式方程的解为 .
    【分析】去分母后化为整式方程求解,后检验即可.
    【解答】解:,
    3x=x﹣3,
    2x=﹣3,

    经检验,是原分式方程的解.
    故答案为:.
    12.(2分)已知点A(x1,y1)与点B(x2,y2)都在反比例函数的图象上,且x2<0<x1,那么y1 > y2(填“>”,“=”或“<”).
    【分析】由k<0,双曲线在第二,四象限,根据x1<0<x2即可判断A在第二象限,B在第四象限,从而判定y1>y2.
    【解答】解:∵k=﹣4<0,
    ∴双曲线在第二,四象限,
    ∵x2<0<x1,
    ∴B在第二象限,A在第四象限,
    ∴y1<y2;
    故答案为:<.
    13.(2分)如图,在▱ABCD中,,连接BE,交AC于点F,AC=10,则CF的长为 6 .
    【分析】由平行四边形的性质得AD∥CB,AD=CB,则AE=AD=CB,可证明△EAF∽△BCF,得==,则CF=AC=6,于是得到问题的答案.
    【解答】解:∵四边形ABCD是平行四边形,
    ∴AD∥CB,AD=CB,
    ∵AE=AD,
    ∴AE=CB,
    ∵AE∥CB,
    ∴△EAF∽△BCF,
    ∴==,
    ∵AC=10,
    ∴CF=AC=AC=×10=6,
    故答案为:6.
    14.(2分)如图,PA,PB是⊙O的切线,A,B是切点,∠P=62°,C是⊙O上的动点(异于A,B),连接CA,CB,则∠C的度数为 59或121 °.
    【分析】根据切线的性质得到∠OAP=90°,∠OBP=90°,再根据四边形内角和得到∠AOB=118°,然后根据圆周角定理和圆内接四边形的性质求∠ACB的度数.
    【解答】解:连接OA,OB,
    ∵PA,PB是⊙O的两条切线,
    ∴OA⊥PA,OB⊥PB,
    ∴∠OAP=90°,∠OBP=90°,而∠P=62°,
    ∴∠AOB=360°﹣90°﹣90°﹣62°=118°,
    当点P在劣弧AB上,则∠ACB=∠AOB=59°,
    当点P在优弧AB上,则∠ACB=180°﹣59°=121°.
    故答案为:59或121.
    15.(2分)一笔总额为1078元的奖金,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍.若把这笔奖金发给6个人,评一、二、三等奖的人数分别为a,b,c,且0<a≤b≤c,那么三等奖的奖金金额是 98或77 元.
    【分析】由a,b,c之间的关系结合a,b,c均为整数,即可得出a,b,c的值,设三等奖的奖金金额为x元,则二等奖的奖金金额为2x元,一等奖的奖金金额为4x元,根据奖金的总额为1078元,即可得出关于x的一元一次方程,解之即可得出结论(取其为整数的值).
    【解答】解:∵a+b+c=6,0<a≤b≤c,且a,b,c均为整数,
    ∴,,.
    设三等奖的奖金金额为x元,则二等奖的奖金金额为2x元,一等奖的奖金金额为4x元,
    依题意,得:4x+2x+4x=1078,4x+2×2x+3x=1078,2×4x+2×2x+2x=1078,
    解得:x=107.8(不合题意,舍去),x=98,x=77.
    故答案为:98或77.
    16.(2分)把红、蓝、黄三种颜色的筷子各5根混在一起.如果让你闭上眼睛,每次最少拿出 4 根才能保证一定有2根同色的筷子;如果要保证有2双不同色的筷子,每次最少拿出 8 根.(2双不同色的筷子是指一双筷子为其中一种颜色,另一双筷子为另一种颜色)
    【分析】根据题意可知,筷子的颜色共有3种,根据抽屉原理可知,先拿出3根是三种颜色,所以一次至少要拿出3+1=4(根)筷子才能保证一定有2根同色的筷子;根据题意可知,先把其中一种颜色的全部(5根)摸出,剩下的2种颜色的筷子各再摸出1根,即2根,还不能满足条件,则此时再任意拿出1根,必定会出现有2双不同色的筷子,据此解答即可.
    【解答】解:3+1=4(根),
    答:每次最少拿出4根才能保证一定有2根同色的筷子;
    5+2+1=8(根),
    答:要保证有2双不同色的筷子,每次最少拿出8根.
    故答案为:4,8.
    三.解答题(共12小题,满分68分)
    17.(5分)计算:.
    【分析】先分别按照负整数指数幂、求立方根、绝对值的化简法则及特殊角的三角函数值化简,再合并同类项及同类二次根式即可.
    【解答】解:
    =﹣3+2+﹣1﹣4×
    =﹣2+﹣2
    =﹣2﹣.
    18.(5分)解不等式组:.
    【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.
    【解答】解:,
    由①得x≤﹣1,
    由②得x>﹣3,
    ∴不等式组的解集为:﹣3<x≤﹣1.
    19.(5分)已知x+y=6,xy=9,求的值.
    【分析】首先化简,然后把x+y=6,xy=9代入化简后的算式计算即可.
    【解答】解:∵x+y=6,xy=9,




    =.
    20.(6分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接DE,DG.
    (1)请判断四边形EBGD的形状,并说明理由;
    (2)若∠ABC=60°,∠C=45°,DE=2,求BC的长.
    【分析】(1)四边形EBGD为菱形,根据邻边相等的平行四边形是菱形即可判断;
    (2)过D作DM⊥BC于M,分别求出CM、BM即可;
    【解答】解:(1)四边形EBGD为菱形;
    理由:∵EG垂直平分BD,
    ∴EB=ED,GB=GD,
    ∴∠EBD=∠EDB,
    ∵∠EBD=∠DBC,
    ∴∠EDF=∠GBF,
    ∴DE∥BG,同理BE∥DG,
    ∴四边形BEDG为平行四边形,
    又∵DE=BE,∴四边形EBGD为菱形;
    (2)如图,过D作DM⊥BC于M,
    由(1)知,∠DGC=∠ABC=60°,∠DBM=∠ABC=30°,DE=DG=2,
    ∴在Rt△DMG中,得DM=3,在Rt△DMB中,得BM=3
    又∵∠C=45°,
    ∴CM=DM=3,
    ∴BC=3+3.
    21.(6分)小明到文具店买文具,请你根据对话信息(小明:阿姨您好,我要买12支中性笔和20本笔记本,是不是一共112元?店员:不对呀,一共是144元.小明:啊……哦,我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了),求中性笔和笔记本的单价分别是多少元?
    【分析】设中性笔的单价是x元,笔记本的单价是y元,利用总价=单价×数量,可列出关于x,y的二元一次方程组,解之即可得出结论.
    【解答】解:设中性笔的单价是x元,笔记本的单价是y元,
    根据题意得:,
    解得:.
    答:中性笔的单价是2元,笔记本的单价是6元.
    22.(5分)已知一次函数 y=(k﹣2)x﹣3k+12.
    (1)k为何值时,函数图象经过点(0,9)?
    (2)若一次函数 y=(k﹣2)x﹣3k+12 的函数值y随x的增大而减小,求k的取值范围.
    【分析】(1)根据一次函数y=(k﹣2)x﹣3k+12图象经过点(0,9),列方程即可得到结论;
    (2)根据k﹣2<0时一次函数 y=(k﹣2)x﹣3k+12 的函数值y随x的增大而减小,求出k的取值范围即可.
    【解答】解:(1)∵一次函数y=(k﹣2)x﹣3k+12图象经过点(0,9),
    ∵(k﹣2)×0﹣3k+12=9,
    解得k=1,
    故当k=1时,函数图象经过点(0,9);
    (2)∵一次函数 y=(k﹣2)x﹣3k+12 的函数值y随x的增大而减小,
    ∴k﹣2<0,
    解得k<2.
    故当k=1或﹣1时,一次函数y=(k﹣2)x﹣3k+12的值都是随x值的增大而减小.
    23.(5分)某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:m)如下:
    甲:1.71,1.65,1.68,1.68,1.72,1.73,1.68,1.67;
    乙:1.60,1.74,1.72,1.69,1.62,1.71,1.69,1.75;
    【整理与分析】
    (1)由上表填空:a= 1.68 ,b= 1.70 ;
    (2)这两人中, 甲 的成绩更为稳定.
    【判断与决策】
    (3)经预测,跳高1.69m就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?请说明理由.
    【分析】(1)利用众数及中位数的定义分别求得a、b的值即可;
    (2)根据方差的计算公式分别计算方差,再根据方差的意义判断即可;
    (3)看哪位运动员的成绩在1.69m以上的多即可.
    【解答】解:(1)∵甲的成绩中1.68出现了3次,最多,
    ∴a=1.68,
    乙的中位数为b==1.70,
    故答案为:1.68,1.70;
    (2)分别计算甲、乙两人的跳高成绩的方差分别:
    S甲2=×[(1.71﹣1.69)2+(1.65﹣1.69)2+…+(1.67﹣1.69)2]=0.00065,
    S乙2=×[(1.60﹣1.69)2+(1.74﹣1.69)2+…+(1.75﹣1.69)2]=0.00255,
    ∵S甲2<S乙2,
    ∴甲的成绩更为稳定;
    故答案为:甲;
    (3)应该选择乙,理由如下:
    若1.69m才能获得冠军,那么成绩在1.69m及1.69m以上的次数乙多,所以选择乙.
    24.(6分)如图,四边形ABCD是⊙O的内接四边形,过点A作AE∥BC交CD的延长线于点E,AE=AB,AD=ED,连接BD.
    (1)求证:∠BAD=∠EAD;
    (2)连接AC,若CD=1,DE=3,求AB的长.
    【分析】(1)根据等腰三角形的性质、平行线的性质、圆内接四边形的性质证明∠BAD=∠EAD;
    (2)连接AC,证明△ADB≌△ADE,得到∠ABD=∠E,根据圆周角定理得到∠ABD=∠ACD,证明△ACE∽△DAE,根据相似三角形的性质列出比例式,把已知数据代入计算即可.
    【解答】(1)证明:∵AD=ED,
    ∴∠EAD=∠E,
    ∵AE∥BC,
    ∴∠E+∠BCD=180°,
    ∵四边形ABCD是⊙O的内接四边形,
    ∴∠BAD+∠BCD=180°,
    ∴∠BAD=∠EAD;
    (2)解:如图,连接AC,
    在△ADB和△ADE中,

    ∴△ADB≌△ADE(SAS),
    ∴∠ABD=∠E,
    由圆周角定理得:∠ABD=∠ACD,
    ∴∠ACD=∠E=∠EAD,
    ∵∠E=∠E,
    ∴△ACE∽△DAE,
    ∴=,即=,
    解得:AE=2,
    ∴AB=AE=2.
    25.(5分)【综合与实践】
    【实践任务】研究小组进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况,某研究小组在两种不同的场景下做对比实验,并收集该试剂挥发过程中剩余质量随时间变化的数据.
    【实验数据】该试剂挥发过程中剩余质量y(克)随时间x(分钟)变化的数据(0≤x≤20),并分别绘制在平面直角坐标系中,如图所示:
    任务一:求出函数表达式
    (1)经过描点构造函数模型来模拟两种场景下y随x变化的函数关系,发现场景A的图象是抛物线y=﹣0.04x2+bx+c的一部分,场景B的图象是直线y=ax+c(a≠0)的一部分,分别求出场景A、B相应的函数表达式;
    任务二:探究该化学试剂的挥发情况
    (2)查阅文献可知,该化学试剂发挥作用的最低质量为3克,在上述实验中,该化学试剂在哪种场景下发挥作用的时间更长?
    【分析】(1)应用待定系数法即可求出函数解析式;
    (2)分别求出y=3时,x的值,再比较即可得到答案.
    【解答】解:(1)场景A:把 (0,21),(10,16),代入 y=﹣0.04x2+bx+c,
    得:,
    解得,
    ∴y=﹣0.04x2﹣0.1x+21;
    场景B:把 (0,21),(5,16),代入y=ax+c,
    得:,
    解得,
    ∴y=﹣x+21;
    场景A的函数表达式为 y=﹣0.04x2﹣0.1x+21,场景B的函数表达式为 y=﹣x+21;
    (2)当y=3时,
    场景A中,3=﹣0.04x2﹣0.1x+21,
    解得:x1=20,x2=﹣22.5(舍去),
    场景B中,3=﹣x+21,
    解得 x=18,
    ∵20>18,
    ∴化学试剂在场景A下发挥作用的时间更长.
    26.(6分)已知抛物线y=x2﹣(a+2)x+2a+1.
    (1)若a=2,求抛物线的对称轴和顶点坐标;
    (2)若抛物线过点(﹣1,y0),且对于抛物线上任意一点(x1,y1)都有y1≥y0,若A(m,n),B(2﹣m,p)是这条抛物线上不同的两点,求证:n+p>﹣8.
    【分析】(1)将a=2代入二次函数,再将二次函数化为顶点式即可得到答案;
    (2)由题意可得(﹣1,y0)为抛物线顶点,从而得到抛物线的对称轴为x=﹣1,从而计算出a的值,再将A(m,n),B(2﹣m,p)代入如抛物线的解析式得到n+p=2(m﹣1)2﹣8,即可得到答案.
    【解答】解:(1)∵a=2,
    ∴抛物线的解析式为 y=x2−4x+5,
    ∵y=x2−4x+5=(x−2)2+1,
    ∴抛物线的对称轴为直线x=2,顶点坐标为(2,1);
    (2)∵抛物线过点 (−1,yn),且对于抛物线上任意一点 (x1,y1) 都有 y1≥y0,
    ∴(−1,y0) 为抛物线的顶点,
    ∴抛物线的对称轴为直线 x=﹣1,
    ∴=−1.
    ∴a=﹣4,
    ∴该抛物线的解析式为 y=x2+2x−7,
    ∵A(m,n),B(2﹣m,p)是抛物线上不同的两点,
    ∴n=m2+2m−7,p=(2−m)2+2(2−m)−7.
    ∴n+p=m2+2m﹣7+(2﹣m)2+2(2﹣m)﹣7=2(m﹣1)2﹣8,
    又∵m≠2﹣m,
    ∴m≠1,
    ∴n+p>﹣8.
    27.(7分)旋转是几何图形运动中的一种重要变换,通常与全等三角形等数学知识相结合来解决实际问题,某学校数学兴趣小组在研究三角形旋转的过程中,进行如下探究:△ABC和△DEF均为等腰直角三角形,∠BAC=∠EDF=90°,点D为BC中点,将△DEF绕点D旋转,连接AE、CF.
    观察猜想:
    (1)如图1,在△DEF旋转过程中,AE与CF的位置关系为 AE=CF ;
    探究发现:
    (2)如图2,当点E、F在△ABC内且C、E、F三点共线时,试探究线段CE、AE与DE之间的数量关系,并说明理由;
    解决问题:
    (3)若△ABC中,,在△DEF旋转过程中,当且C、E、F三点共线时,直接写出DE的长.
    【分析】(1)如图所示,连接AD,根据等腰三角形的性质可证△AED≌△CFD(SAS),由此即可求解;
    (2)由(1)中△AED≌△CFD(SAS),再根据△DEF为等腰直角三角形,由此即可求解;
    (3)点C、E、F三点共线,分类讨论,根据(2),(3)中的结论即可求解.
    【解答】解:(1)AE=CF,理由如下,
    如图所示,连接AD,
    ∵△ABC为等腰直角三角形,∠BAC=90°,
    ∴∠B=∠ACB=45°,
    ∵点D为BC中点,
    ∴AD⊥BC,
    ∴∠ACD=∠DAC=45°,
    ∴AD=CD,
    ∵△DEF为等腰直角三角形,∠EDF=90°,
    ∴DE=DF,∠EDA+∠ADF=∠ADF+∠FDC=90°,
    ∴∠EDA=∠FDC,
    在△AED和△CFD中,

    ∴△AED≌△CFD(SAS),
    ∴AE=CF,
    故答案为:AE=CF;
    (2)证明:如图2所示,连接AD,
    由(1)可知,△AED≌△CFD(SAS),
    ∴∠EAD=∠FCD,AE=CF,
    ∴CE=CF+EF=AE+EF,
    ∴CE﹣AE=CE﹣CF=EF,
    ∵△DEF是等腰直角三角形,即DE=DF,
    ∴EF2=DE2+DF2=2DE2,
    ∴EF=DE=DF,
    ∴CE﹣AE=DE;
    (3)解:AB=,AE=,C、E、N三点共线,
    ①由(2)可知,CE﹣AE=DE,
    由(1)可知,∠EAD=∠FCD,
    ∵∠ACD=∠ACE+∠FCD=45°,∠DCF+∠FCA+∠DAC=90°,
    ∴∠EAD+∠FCA+∠DAC=90°,
    ∴∠AEC=90°,
    在Rt△ACE中,AB=AC=,AE=CF=,
    ∴CE===,
    ∴EF=CE﹣CF=,
    ∴DE=FE=;
    ②如图所示,由(1)可知,△ADE≌△CDN,AE=CF=,∠DAE=∠DCF,
    ∴∠DAE+∠EAC+∠ACD=∠DCF+∠EAC+∠ACD=90°,
    ∴△AEC是直角三角形,
    ∴CE===,
    ∴EF=CF﹣CE=(不符合题意舍去);
    ③如图,
    ∵△DEF是等腰直角三角形,
    ∴∠F=∠DEF=45°,
    同法可证△ADE≌△CDF,
    ∴∠AED=∠F=45°,
    ∴∠AED+∠DEF=45°+45°=90°,即△ACM是直角三角形,
    在Rt△ACE中,AB=AC=,AE=CF=,
    ∴CE===,
    ∴EF=CE+CF=,
    ∵EF=DE,
    ∴DE==;
    综上所述,DE的长为或.
    28.(7分)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N(点M,N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系.
    (1)如图1,点C(,0),D(0,﹣1),E(0,1),点P在线段CE上运动(点P可以与点C,E重合),连接OP,DP.
    ①线段DP的最小值为 ,最大值为 2 ;线段OP的取值范围是 ;
    ②点O与线段DE 是 (填“是”或“否”)满足限距关系;
    (2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点G纵坐标的取值范围;
    (3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,3为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.
    【分析】(1)①根据垂线段最短以及已知条件,确定OP,DP的最大值,最小值即可解决问题;
    ②根据限距关系的定义判断即可;
    (2)根据两直线平行k相等计算设FG的解析式为:y=﹣x+b,得G(0,b),F(b,0),分三种情形:①线段FG在⊙O内部,②线段FG与⊙O有交点,③线段FG 与⊙O没有交点,分别构建不等式求解即可;
    (3)如图3﹣1中,不妨设⊙K,⊙H的圆心在x轴上位于y轴的两侧,根据⊙H和⊙K都满足限距关系,构建不等式求解即可.
    【解答】解:(1)①如图1中,
    ∵点C(,0),E(0,1),
    ∴OE=1,OC=,
    ∴EC=2,∠ECO=30°,
    当OP⊥EC时,OP的值最小,当P与C重合时,OP的值最大是,
    Rt△OPC中,OP=OC=,即OP的最小值是;
    如图2,当DP⊥EC时,DP的值最小,
    Rt△DEP中,∠OEC=60°,
    ∴∠EDP=30°,
    ∵DE=2,
    ∴cs30°=,
    ∴=,
    ∴DP=,
    ∴当P与E重合时,DP的值最大,DP的最大值是2,
    线段DP的最小值为,最大值为2;线段OP的取值范围是;
    故答案为:,2,;
    ②根据限距关系的定义可知,线段DE上存在两点M,N,满足OM=2ON,如图3,
    故点O与线段DE满足限距关系;
    故答案为:是;
    (2)∵点C(,0),E(0,1),
    ∴设直线CE的解析式为:y=kx+m,
    ∴,解得,
    ∴直线CE的解析式为:y=﹣x+1,
    ∵FG∥EC,
    ∴设FG的解析式为:y=﹣x+b,
    ∴G(0,b),F(b,0),
    ∴OG=b,OF=b,
    当0<b<时,如图5,线段FG在⊙O内部,与⊙O无公共点,
    此时⊙O上的点到线段FG的最小距离为1﹣b,最大距离为1+b,
    ∵线段FG与⊙O满足限距关系,
    ∴1+b≥2(1﹣b),
    解得b≥,
    ∴b的取值范围为≤b<;
    当1≤b≤6时,线段FG与⊙O有公共点,线段FG与⊙O满足限距关系,
    当b>6时,如图6,线段FG在⊙O的外部,与⊙O没有公共点,
    此时⊙O上的点到线段FG的最小距离为b﹣1,最大距离为b+1,
    ∵线段FG与⊙O满足限距关系,
    ∴b+1≥2(b﹣1),
    而b+1≥2(b﹣1)总成立,
    ∴b>6时,线段FG 与⊙O满足限距关系,
    综上所述,点G的纵坐标的取值范围是:b≥2;
    (3)如图3﹣1中,不妨设⊙K,⊙H的圆心在x轴上位于y轴的两侧,
    两圆的距离的最小值为2r﹣6,最大值为2r+6,
    ∵⊙H和⊙K都满足限距关系,
    ∴2r+6≥2(2r﹣6),
    解得r≤9,
    故r的取值范围为0<r≤9.
    阿姨您好,我要买12支中性笔和20本笔记本,是不是共112元.

    不对呀,是144元.
    啊……哦我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了.
    平均数
    众数
    中位数

    1.69
    a
    1.68

    1.69
    1.69
    b
    相关试卷

    (北京卷)2023年中考数学第三次模拟考试: 这是一份(北京卷)2023年中考数学第三次模拟考试,文件包含北京卷2023年中考数学第三次模拟考试全解全析docx、北京卷2023年中考数学第三次模拟考试参考答案docx、北京卷2023年中考数学第三次模拟考试A4考试版docx、北京卷2023年中考数学第三次模拟考试考试版docx、北京卷2023年中考数学第三次模拟考试答题卡pdf等5份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。

    数学(北京卷)-学易金卷:2023年中考第三次模拟考试卷: 这是一份数学(北京卷)-学易金卷:2023年中考第三次模拟考试卷,文件包含北京卷全解全析2023年中考数学第三模拟考试卷docx、北京卷参考答案2023年中考数学第三模拟考试卷docx、北京卷考试版A42023年中考数学第三模拟考试卷docx、北京卷考试版A32023年中考数学第三模拟考试卷docx等4份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。

    初中数学中考复习 (浙江卷)2020年中考数学第三次模拟考试-数学(考试版): 这是一份初中数学中考复习 (浙江卷)2020年中考数学第三次模拟考试-数学(考试版),共3页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        中考数学(北京卷)-2024年中考数学第三次模考试
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map