第4-5章 因式分解和分式方程(考点压轴,压轴必刷12种题型30题)(原卷版+解析版)
展开一.因式分解-提公因式法(共2小题)
1.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )
A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)
C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)
【答案】B
【解答】解:b2(x﹣3)+b(x﹣3),
=b(x﹣3)(b+1).
故选:B.
2.已知:a+b=3,ab=2,求下列各式的值:
(1)a2b+ab2;
(2)a2+b2.
【答案】见试题解答内容
【解答】解:(1)a2b+ab2=ab(a+b)=2×3=6;
(2)∵(a+b)2=a2+2ab+b2
∴a2+b2=(a+b)2﹣2ab,
=32﹣2×2,
=5.
二.因式分解-十字相乘法等(共1小题)
3.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.
解:设x2﹣4x=y
原式=(y+2)(y+6)+4(第一步)
=y2+8y+16(第二步)
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
请问:
(1)该同学因式分解的结果是否彻底? 不彻底 (填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.
(2)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.
【答案】见试题解答内容
【解答】解:(1)∵(x2﹣4x+4)2=(x﹣2)4,
∴该同学因式分解的结果不彻底.
(2)设x2﹣2x=y
原式=y(y+2)+1
=y2+2y+1
=(y+1)2
=(x2﹣2x+1)2
=(x﹣1)4.
故答案为:不彻底.
三.因式分解的应用(共9小题)
4.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )
A.﹣1B.0C.3D.6
【答案】B
【解答】解:a2b+ab2﹣a﹣b
=(a2b﹣a)+(ab2﹣b)
=a(ab﹣1)+b(ab﹣1)
=(ab﹣1)(a+b)
将a+b=3,ab=1代入,得
原式=0.
故选:B.
5.已知a,b,c是△ABC的三边,b2+2ab=c2+2ac,则△ABC的形状是 等腰三角形 .
【答案】见试题解答内容
【解答】解:b2+2ab=c2+2ac,
a2+b2+2ab=a2+c2+2ac,
(a+b)2=(a+c)2,
a+b=a+c,
b=c,
所以此三角形是等腰三角形,
故答案为:等腰三角形.
6.已知x2+y2+z2+2x﹣4y﹣6z+14=0,则x﹣y+z= 0 .
【答案】见试题解答内容
【解答】解:∵x2+y2+z2+2x﹣4y﹣6z+14=0,
∴x2+2x+1+y2﹣4y+4+z2﹣6z+9=0,
∴(x+1)2+(y﹣2)2+(z﹣3)2=0,
∴x+1=0,y﹣2=0,z﹣3=0,
∴x=﹣1,y=2,z=3,
故x﹣y+z=﹣1﹣2+3=0.
故答案为:0.
7.已知m2﹣mn=2,mn﹣n2=﹣5,则3m2+2mn﹣5n2= ﹣19 .
【答案】见试题解答内容
【解答】解:方法一:
根据题意,m2﹣mn=2,mn﹣n2=﹣5,故有m2=2+mn,n2=mn+5,
∴原式=3(2+mn)+2mn﹣5(mn+5)=﹣19.
故应填﹣19.
方法二:根据已知条件m2﹣mn=2,mn﹣n2=﹣5,得
m(m﹣n)=2,n(m﹣n)=﹣5
∴两式相加得,(m+n)(m﹣n)=﹣3,
∴3m2+2mn﹣5n2=3(m+n)(m﹣n)+2n(m﹣n)
=3×(﹣3)+2(﹣)(m﹣n)
=﹣9﹣10
=﹣19.
故应填﹣19.
8.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值 18 .
【答案】见试题解答内容
【解答】解:∵a+b=3,ab=2,
∴a3b+2a2b2+ab3
=ab(a2+2ab+b2)
=ab(a+b)2
=2×32
=18
故答案为:18.
9.已知x为自然数,且x+11与x﹣72都是一个自然数的平方,则x的值为 1753 .
【答案】1753.
【解答】解:∵x为自然数,且x+11与x﹣72都是一个自然数的平方,
∴设a2=x+11,b2=x﹣72,
∵a2﹣b2=(a+b)(a﹣b),
∴(a+b)(a﹣b)=(x+11)﹣(x﹣72),
∴(a+b)(a﹣b)=x+11﹣x+72,
∴(a+b)(a﹣b)=83,
∴,
解得:,
∵a2=x+11,
∴x=a2﹣11
=422﹣11
=1764﹣11
=1753.
故答案为:1753.
10.利用因式分解计算:2022+202×196+982= 90000 .
【答案】见试题解答内容
【解答】解:原式=2022+2x202x98+982
=(202+98)2
=3002
=90000.
11.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.
解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0
∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;
(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c的值;
(3)已知a﹣b=8,ab+c2﹣16c+80=0,求a+b+c的值.
【答案】见试题解答内容
【解答】解:(1)∵x2﹣2xy+2y2+6y+9=0,
∴(x2﹣2xy+y2)+(y2+6y+9)=0,
∴(x﹣y)2+(y+3)2=0,
∴x﹣y=0,y+3=0,
∴x=﹣3,y=﹣3,
∴xy=(﹣3)×(﹣3)=9,
即xy的值是9.
(2)∵a2+b2﹣10a﹣12b+61=0,
∴(a2﹣10a+25)+(b2﹣12b+36)=0,
∴(a﹣5)2+(b﹣6)2=0,
∴a﹣5=0,b﹣6=0,
∴a=5,b=6,
∵6﹣5<c<6+5,c≥6,
∴6≤c<11,
∴△ABC的最大边c的值可能是6、7、8、9、10.
(3)∵a﹣b=8,ab+c2﹣16c+80=0,
∴a(a﹣8)+16+(c﹣8)2=0,
∴(a﹣4)2+(c﹣8)2=0,
∴a﹣4=0,c﹣8=0,
∴a=4,c=8,b=a﹣8=4﹣8=﹣4,
∴a+b+c=4﹣4+8=8,
即a+b+c的值是8.
12.先阅读下列材料,再解答下列问题:
材料:因式分解:(x+y)2+2(x+y)+1.
解:将“x+y”看成整体,令x+y=A,则
原式=A2+2A+1=(A+1)2.
再将“A”还原,得原式=(x+y+1)2.
上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:
(1)因式分解:1+2(x﹣y)+(x﹣y)2= (x﹣y+1)2 ;
(2)因式分解:(x2﹣6x)(x2﹣6x+18)+81;
(3)求证,若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.
【答案】(1)(x﹣y+1)2;
(2)(x﹣3)4;
(3)见试题详解内容.
【解答】解:(1)1+2(x﹣y)+(x﹣y)2
=(x﹣y+1)2;
(2)令A=x2﹣6x,则原式变为A(A+18)+81=A2+18A+81=(A+9)2,
故(x2﹣6x)(x2﹣6x+18)+81=(A+9)2=(x﹣3)4.
(3)(n+1)(n+2)(n2+3n)+1
=(n2+3n)[(n+1)(n+2)]+1
=(n2+3n)(n2+3n+2)+1
=(n2+3n)2+2(n2+3n)+1
=(n2+3n+1)2,
∵n为正整数,
∴n2+3n+1也为正整数,
∴代数式(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.
四.分式的基本性质(共1小题)
13.已知,则= .
【答案】见试题解答内容
【解答】解:设=k,则x=2k,y=3k,z=4k,则===.
故答案为.
五.分式的加减法(共2小题)
14.如果记y==f(x),并且f(1)表示当x=1时y的值,即f(1)==;f()表示当x=时y的值,即f()==,那么f(1)+f(2)+f()+f(3)+f()+…+f(n)+f()= n+ .(结果用含n的代数式表示,n为正整数).
【答案】见试题解答内容
【解答】解:∵f(1)==;f()==,f(2)==;
∴f(1)+f(2)+f()=+1=2﹣.
故f(1)+f(2)+f()+f(3)+f()+…+f(n)+f()=+1+1+…+1=.(n为正整数),
解法二:由题意f(2)+f()=1,
f(3)+f()=1,
f(n)+f()=1,
∴(1)+f(2)+f()+f(3)+f()+…+f(n)+f()=+1+1+…+1=n﹣.
15.阅读下面的材料,并解答后面的问题
材料:将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式.
解:由分母为x+1,可设3x2+4x﹣1=(x+1)(3x+a)+b.
因为(x+1)(3x+a)+b=3x2+ax+3x+a+b=3x2+(a+3)x+a+b,
所以3x2+4x﹣1=3x2+(a+3)x+a+b.
所以,解得.
所以==﹣=3x+1﹣.
这样,分式就被拆分成了一个整式3x+1与一个分式的差的形式.
根据你的理解决下列问题:
(1)请将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式;
(2)若分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m﹣11+,求m2+n2+mn的最小值.
【答案】(1)以=2x+5+;
(2)27.
【解答】解:(1)由分母为x﹣1,可设2x2+3x+6=(x﹣1)(2x+a)+b.
因为(x﹣1)(2x+a)+b=2x2+ax﹣2x﹣a+b=2x2+(a﹣2)x﹣a+b,
所以2x2+3x+6=2x2+(a﹣2)x﹣a+b,
因此有,
解得,
所以==2x+5+;
(2)由分母为x+2,可设5x2+9x﹣3=(x+2)(5x+a)+b,
因为(x+2)(5x+a)+b=5x2+ax+10x+2a+b=5x2+(a+10)x+2a+b,
所以5x2+9x﹣3=5x2+(a+10)x+2a+b,
因此有,
解得,
所以==5x﹣1﹣,
所以5m﹣11+=5x﹣1﹣,
因此5m﹣11=5x﹣1,n﹣6=﹣x﹣2,
所以m=x+2,n=﹣x+4,
所以m2+n2+mn=x2﹣2x+28=(x﹣1)2+27,
因为(x﹣1)2≥0,所以(x﹣1)2+27≥27,
所以m2+n2+mn的最小值为27.
六.分式的混合运算(共2小题)
16.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是 .
【答案】见试题解答内容
【解答】解:根据题意可知
第一次倒出:,
第二次倒出:,
第三次倒出:,
…
第n次倒出:,
∴第10次倒出:,
∴倒了10次后容器内剩余的水量=1﹣(++…+)=1﹣(+﹣+﹣+…+﹣)=1﹣(1﹣)=.
故答案是.
17.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:=2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:==1﹣;
解决下列问题:
(1)分式是 真分式 (填“真分式”或“假分式”);
(2)将假分式化为带分式;
(3)先化简﹣÷,并求x取什么整数时,该式的值为整数.
【答案】见试题解答内容
【解答】解:(1)由题意可得,
分式是真分式,
故答案为:真分式;
(2)==x+2﹣;
(3)﹣÷
=﹣
=﹣
=
=
=
=2﹣,
∵2﹣是整数,
∴x﹣1=±1或x﹣1=±2,
解得,x=0,2,3,﹣1,
∵x=0,1,﹣1,2时,原分式无意义,
∴x=3,
当x=3时,原式=2﹣=1,
即当x=3时,该式的值为整数.
七.分式的化简求值(共2小题)
18.先化简,再求值:(x﹣2+)÷,其中x=﹣.
【答案】见试题解答内容
【解答】解:原式=(+)•
=•
=2(x+2)
=2x+4,
当x=﹣时,
原式=2×(﹣)+4
=﹣1+4
=3.
19.先化简,再求值:(+)÷,其中a满足方程a2+4a+1=0.
【答案】见试题解答内容
【解答】解:(+)÷
=[﹣]•
=•
=
=,
∵a2+4a+1=0,
∴a2+4a=﹣1,
∴原式=.
八.分式方程的解(共4小题)
20.若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是( )
A.﹣10B.﹣12C.﹣16D.﹣18
【答案】B
【解答】解:,
解①得x≥﹣3,
解②得x≤,
不等式组的解集是﹣3≤x≤.
∵仅有三个整数解,
∴﹣1≤<0
∴﹣8≤a<﹣3,
+=1
3y﹣a﹣12=y﹣2.
∴y=
∵y≠2,
∴a≠﹣6,
又y=有整数解,
∴a=﹣8或﹣4,
所有满足条件的整数a的值之和是(﹣8)+(﹣4)=﹣12,
故选:B.
21.已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是( )
A.﹣1<b≤3B.2<b≤3C.8≤b<9D.3≤b<4
【答案】D
【解答】解:分式方程去分母得:3﹣a﹣a2+4a=﹣1,即(a﹣4)(a+1)=0,
解得:a=4或a=﹣1,
经检验a=4是增根,故分式方程的解为a=﹣1,
已知不等式组解得:﹣1<x≤b,
∵不等式组只有4个整数解,
∴3≤b<4.
故选:D.
22.若关于x的方程+=无解,则m的值为 ﹣1或5或﹣ .
【答案】见试题解答内容
【解答】解:去分母得:x+4+m(x﹣4)=m+3,
可得:(m+1)x=5m﹣1,
当m+1=0时,一元一次方程无解,
此时m=﹣1,
当m+1≠0时,
则x==±4,
解得:m=5或﹣,
综上所述:m=﹣1或5或﹣,
故答案为:﹣1或5或﹣.
23.若关于x的分式方程+=3的解为正实数,则实数m的取值范围是 m<6且m≠2 .
【答案】见试题解答内容
【解答】解:+=3,
方程两边同乘(x﹣2)得,x+m﹣2m=3x﹣6,
解得,x=,
∵≠2,
∴m≠2,
由题意得,>0,
解得,m<6,
故答案为:m<6且m≠2.
九.分式方程的增根(共1小题)
24.已知分式方程有增根,则增根是( )
A.x=1B.x=1或x=0C.x=0D.不确定
【答案】A
【解答】解:去分母得:6x=x+5,
解得:x=1,
经检验x=1是增根.
故选:A.
一十.由实际问题抽象出分式方程(共2小题)
25.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是( )
A.B.
C.D.
【答案】D
【解答】解:设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意得
=•.
故选:D.
26.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为( )
A.+=B.﹣=C.+10=D.﹣10=
【答案】B
【解答】解:设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,由题意得,
﹣=.
故选:B.
一十一.分式方程的应用(共3小题)
27.2013年4月20日,雅安发生7.0级地震,某地需550顶帐篷解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐篷甲工厂比乙工厂少用4天.
①求甲、乙两个工厂每天分别可加工生产多少顶帐篷?
②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐篷的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?
【答案】见试题解答内容
【解答】解:①设乙工厂每天可加工生产x顶帐篷,则甲工厂每天可加工生产1.5x顶帐篷,根据题意得:
﹣=4,
解得:x=20,
经检验x=20是原方程的解,
则甲工厂每天可加工生产1.5×20=30(顶),
答:甲、乙两个工厂每天分别可加工生产30顶和20顶帐篷;
②设甲工厂加工生产y天,根据题意得:
3y+2.4×≤60,
解得:y≥10,
则至少应安排甲工厂加工生产10天.
答:至少应安排甲工厂加工生产10天.
28.华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.
(1)求购买一个A品牌、一个B品牌的足球各需多少元?
(2)华昌中学响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么华昌中学此次最多可购买多少个B品牌足球?
【答案】见试题解答内容
【解答】解:(1)设一个A品牌的足球需x元,则一个B品牌的足球需(x+30)元,由题意得
=×2
解得:x=50
经检验x=50是原方程的解,
x+30=80
答:一个A品牌的足球需50元,则一个B品牌的足球需80元.
(2)设此次可购买a个B品牌足球,则购进A牌足球(50﹣a)个,由题意得
50×(1+8%)(50﹣a)+80×0.9a≤3260
解得a≤31
∵a是整数,
∴a最大等于31,
答:华昌中学此次最多可购买31个B品牌足球.
29.2015年5月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐篷所用车辆相等.
(1)求甲、乙两种货车每辆车可装多少件帐篷?
(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?
【答案】见试题解答内容
【解答】解:(1)设甲种货车每辆车可装x件帐篷,乙种货车每辆车可装y件帐篷,依题意有
,
解得,
经检验,是原方程组的解.
故甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;
(2)设甲种汽车有z辆,乙种汽车有(16﹣z)辆,依题意有
100z+80(16﹣z﹣1)+50=1490,
解得z=12,
16﹣z=16﹣12=4.
故甲种汽车有12辆,乙种汽车有4辆.
一十二.一次函数的应用(共1小题)
30.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:
已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.
(1)求m的值;
(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?
【答案】(1)m=100;
(2)共有11种方案;
(3)应购进甲种运动鞋95双,购进乙种运动鞋105双.
【解答】解:(1)依题意得,=,
整理得,3000(m﹣20)=2400m,
解得m=100,
经检验,m=100是原分式方程的解,
所以,m=100;
(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,
根据题意得,,
解不等式①得,x≥95,
解不等式②得,x≤105,
所以,不等式组的解集是95≤x≤105,
∵x是正整数,105﹣95+1=11,
∴共有11种方案;
(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),
①当50<a<60时,60﹣a>0,W随x的增大而增大,
所以,当x=105时,W有最大值,
即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;
②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;
③当60<a<70时,60﹣a<0,W随x的增大而减小,
所以,当x=95时,W有最大值,
即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.
运动鞋
价格
甲
乙
进价(元/双)
m
m﹣20
售价(元/双)
240
160
专题04 因式分解、分式和分式方程(考题猜想,易错必刷44题18种题型专项训练)(原卷版+解析版): 这是一份专题04 因式分解、分式和分式方程(考题猜想,易错必刷44题18种题型专项训练)(原卷版+解析版),文件包含专题04因式分解分式和分式方程考题猜想易错必刷44题18种题型专项训练原卷版docx、专题04因式分解分式和分式方程考题猜想易错必刷44题18种题型专项训练解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
人教版七年级数学下册同步压轴题 第6章 实数压轴题考点训练(原卷版+解析版): 这是一份人教版七年级数学下册同步压轴题 第6章 实数压轴题考点训练(原卷版+解析版),共11页。试卷主要包含了的算术平方根是等内容,欢迎下载使用。
人教版七年级数学下册同步压轴题 第5~8章压轴题考点训练(二)(原卷版+解析版): 这是一份人教版七年级数学下册同步压轴题 第5~8章压轴题考点训练(二)(原卷版+解析版),共31页。