专练13(几何压轴大题)中考数学考点必刷题(解析版)
展开专练13(几何压轴大题)(30道)
1..已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F是AE的中点
(1)写出线段FD与线段FC的关系并证明;
(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;
(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.
【答案】(1)结论:FD=FC,DF⊥CF.理由见解析;(2)结论不变.理由见解析;(3)≤BF.
【解析】
解:(1)结论:FD=FC,DF⊥CF.
理由:如图1中,
∵∠ADE=∠ACE=90°,AF=FE,
∴DF=AF=EF=CF,
∴∠FAD=∠FDA,∠FAC=∠FCA,
∴∠DFE=∠FDA+∠FAD=2∠FAD,∠EFC=∠FAC+∠FCA=2∠FAC,
∵CA=CB,∠ACB=90°,
∴∠BAC=45°,
∴∠DFC=∠EFD+∠EFC=2(∠FAD+∠FAC)=90°,
∴DF=FC,DF⊥FC.
(2)结论不变.
理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.
∵BC⊥AM,AC=CM,
∴BA=BM,同法BE=BN,
∵∠ABM=∠EBN=90°,
∴∠NBA=∠EBM,
∴△ABN≌△MBE,
∴AN=EM,∴∠BAN=∠BME,
∵AF=FE,AC=CM,
∴CF=EM,FC∥EM,同法FD=AN,FD∥AN,
∴FD=FC,
∵∠BME+∠BOM=90°,∠BOM=∠AOH,
∴∠BAN+∠AOH=90°,
∴∠AHO=90°,
∴AN⊥MH,FD⊥FC.
(3).
当点落在上时,取得最大值,
如图5所示,∵,,,∴,
∵是的中点,∴,
又,
∴,
即的最大值为.
图5
当点落在延长线上时,取得长最小值,
如图6所示,∵,,,∴,
∵是的中点,∴,
又,
∴,
即的最小值为.
图6
综上所述,.
【点睛】
本题考查等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、直角三角形斜边中线的性质、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
2..正方形中,E是边上一点,
(1)将绕点A按顺时针方向旋转,使重合,得到,如图1所示.观察可知:与相等的线段是_______,______.
(2)如图2,正方形中,分别是边上的点,且,试通过旋转的方式说明:
(3)在(2)题中,连接分别交于,你还能用旋转的思想说明.
【答案】(1)BF,AED;(2)证明见解析;(3)证明见解析.
【解析】
(1)、∵△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,
∵DE=BF,∠AFB=∠AED.
(2)、将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,如图2,
则∠D=∠ABE=90°, 即点E、B、P共线,∠EAQ=∠BAD=90°,AE=AQ,BE=DQ, ∵∠PAQ=45°,
∴∠PAE=45° ∴∠PAQ=∠PAE, ∴△APE≌△APQ(SAS), ∴PE=PQ,
而PE=PB+BE=PB+DQ, ∴DQ+BP=PQ;
(3)、∵四边形ABCD为正方形, ∴∠ABD=∠ADB=45°,
如图,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,
则∠ABK=∠ADN=45°,BK=DN,AK=AN, 与(2)一样可证明△AMN≌△AMK,得到MN=MK,
∵∠MBA+∠KBA=45°+45°=90°, ∴△BMK为直角三角形, ∴BK2+BM2=MK2, ∴BM2+DN2=MN2.
考点:(1)、旋转的性质;(2)、全等三角形的判定与性质;(3)、勾股定理;(4)、正方形的性质.
3..如图,△ABC内接于☉O,AB是☉O的直径,CD平分∠ACB交☉O于点D,交AB于点F,弦AE⊥CD于点H,连接CE、OH.
(1)延长AB到圆外一点P,连接PC,若PC2=PB·PA,求证:PC是☉O的切线;
(2)求证:CF·AE=AC·BC;
(3)若=,☉O的半径是,求tan∠AEC和OH的长.
【答案】(1)见解析;(2)见解析;(3) tan∠AEC=,OH =1.
【解析】
(1)证明:∵PC2=PB·PA,∴=,
∵∠BPC=∠APC,∴△PBC∽△PCA,
∴∠BAC=∠PCB,连接OC,如图所示,
∵AO=OC,∴∠ACO=∠BAC,∴∠ACO=∠PCB.
∵AB是☉O的直径,∴∠ACB=90°,
∴∠BCO+∠ACO=90°,
∴∠BCO+∠PCB=90°,∴∠PCO=90°.
∵OC是半径,∴PC是☉O的切线.
(2)证明:∵AB是☉O的直径,∴∠ACB=90°.
∵CD平分∠ACB,∴∠ACD=∠FCB=45°.
∵AE⊥CD,∴∠CAE=45°=∠FCB.
在△ACE与△CFB中,
∠CAE=∠FCB,∠AEC=∠FBC,
∴△ACE∽△CFB,∴=,
∴CF·AE=AC·BC.
(3)作FM⊥AC于M,FN⊥BC于N,CQ⊥AB于Q,延长AE、CB交于点K.
∵CD平分∠ACB,∴FM=FN.
∵S△ACF=AC·FM=AF·CQ,
S△BCF=BC·FN=BF·CQ,
∴==,
∴=.
∵AB是☉O的直径,∴∠ACB=90°且tan∠ABC=.
∵=且∠AEC=∠ABC,
∴tan∠AEC=tan∠ABC==.
设AC=3k,BC=2k,
∵在Rt△ACB中,AB2=AC2+BC2且AB=2,
∴(3k)2+(2k)2=(2)2,∴k=2(k=-2舍去),
∴AC=6,BC=4,
∵∠FCB=45°,∠CHK=90°,
∴∠K=45°=∠CAE,
∴HA=HC=HK,CK=CA=6.
∵CB=4,∴BK=6-4=2,
∵OA=OB,HA=HK,
∴OH是△ABK的中位线,∴OH=BK=1.
【点睛】
此题考查了切线的判定、圆周角定理、等腰直角三角形的判定和性质、相似三角形的判定和性质、三角形中位线定理等知识的综合应用.
4.如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A、B重合),另一直角边与∠CBM的平分线BF相交于点F.
(1)如图1,当点E在AB边得中点位置时:
①通过测量DE、EF的长度,猜想DE与EF满足的数量关系是 ;
②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是 ,请证明你的猜想;
(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的猜想.
【答案】(1)①DE=EF;②NE=BF;理由见解析;(2)DE=EF,理由见解析.
【解析】
解:(1)①DE=EF;②NE=BF;理由如下:
∵四边形ABCD为正方形,
∴AD=AB,∠DAB=∠ABC=90°,
∵N,E分别为AD,AB中点,
∴AN=DN=AD,AE=EB=AB,
∴DN=BE,AN=AE,
∵∠DEF=90°,
∴∠AED+∠FEB=90°,
又∵∠ADE+∠AED=90°,
∴∠FEB=∠ADE,
又∵AN=AE,
∴∠ANE=∠AEN,
又∵∠A=90,
∴∠ANE=45°,
∴∠DNE=180°﹣∠ANE=135°,
又∵∠CBM=90°,BF平分∠CBM,
∴∠CBF=45°,∠EBF=135°,
在△DNE和△EBF中,
∴△DNE≌△EBF(ASA),∴DE=EF,NE=BF.
(2)DE=EF,理由如下:
在DA边上截取DN=EB,连接NE,
∵四边形ABCD是正方形,DN=EB,
∴AN=AE,
∴△AEN为等腰直角三角形,
∴∠ANE=45°,
∴∠DNE=180°﹣45°=135°,
∵BF平分∠CBM,AN=AE,
∴∠EBF=90°+45°=135°,
∴∠DNE=∠EBF,
∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,
∴∠NDE=∠BEF,
在△DNE和△EBF中,
∴△DNE≌△EBF(ASA),
∴DE=EF.
【点睛】
本题主要考查正方形的性质、全等三角形的判定与性质等,能正确地根据图1中证明△DNE与△EBF全等从而得到结论,进而应用到图2是解题的关键.
5..(1)(问题发现)
如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为
(2)(拓展研究)
在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;
(3)(问题发现)
当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.
【答案】(1)BE=AF;(2)无变化;(3)﹣1或+1.
【解析】
解:(1)在Rt△ABC中,AB=AC=2,
根据勾股定理得,BC=AB=2,
点D为BC的中点,∴AD=BC=,
∵四边形CDEF是正方形,∴AF=EF=AD=,
∵BE=AB=2,∴BE=AF,
故答案为BE=AF;
(2)无变化;
如图2,在Rt△ABC中,AB=AC=2,
∴∠ABC=∠ACB=45°,∴sin∠ABC=,
在正方形CDEF中,∠FEC=∠FED=45°,
在Rt△CEF中,sin∠FEC=,
∴,
∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,
∴△ACF∽△BCE,∴ =,∴BE=AF,
∴线段BE与AF的数量关系无变化;
(3)当点E在线段AF上时,如图2,
由(1)知,CF=EF=CD=,
在Rt△BCF中,CF=,BC=2,
根据勾股定理得,BF=,∴BE=BF﹣EF=﹣,
由(2)知,BE=AF,∴AF=﹣1,
当点E在线段BF的延长线上时,如图3,
在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=,
在正方形CDEF中,∠FEC=∠FED=45°,
在Rt△CEF中,sin∠FEC= ,∴ ,
∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB,
∴△ACF∽△BCE,∴ =,∴BE=AF,
由(1)知,CF=EF=CD=,
在Rt△BCF中,CF=,BC=2,
根据勾股定理得,BF=,∴BE=BF+EF=+,
由(2)知,BE=AF,∴AF=+1.
即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF的长为﹣1或+1.
6..如图1,在中,,,点、分别在边、上,,连结,点、、分别为、、的中点.
(1)观察猜想图1中,线段与的数量关系是_______,位置关系是_______;
(2)探究证明把绕点逆时针方向旋转到图2的位置,连结、、,判断的形状,并说明理由;
(3)拓展延伸把绕点在平面内自由旋转,若,,请直接写出面积的最大值.
【答案】(1),;(2)是等腰直角三角形,理由见解析;(3)面积的最大值为.
【解析】
解:(1)∵点、是、的中点
∴,
∵点、是、的中点
∴,
∵,
∴
∴
∵
∴
∵
∴
∵
∴
∴
∴
(2)结论:是等腰直角三角形.
证明:由旋转知,
∵,
∴
∴,
∵由三角形中位线的性质可知,,
∴
∴是等腰三角形
∵同(1)的方法得,、
同(1)的方法得, 、
∴
∴
∵
∴
∴
∴是等腰直角三角形;
(3)∵由(2)得,是等腰直角三角形,
∴最大时,的面积最大
∴且在顶点上面时,,连接AM,AN,如图:
∵在中,,
∴
∵在中,,
∴
∴
∴.
故答案是:(1),;(2)是等腰直角三角形,理由见解析;(3)面积的最大值为
【点睛】
本题考查了三角形中位线的判定和性质、等腰直角三角形的判定和性质、旋转的性质以及求最大面积问题等知识点,属压轴题目,综合性较强.
7.已知:在中,AD是BC边上的中线,点E是AD的中点;过点A作,交BE的延长线于F,连接CF.
求证:四边形ADCF是平行四边形;
填空:
当时,四边形ADCF是______形;
当时,四边形ADCF是______形
【答案】(1)见解析;(2)①矩;②菱.
【解析】
证明:,
在和中
,
≌
.
又,
四边形ADCF为平行四边形;
当时,四边形ADCF是矩形;
当时,四边形ADCF是菱形.
故答案为矩,菱.
【点睛】
此题主要考查了平行四边形的判定以及全等三角形的判定与性质,得出≌是解题关键.
8..如图,矩形中,,,点在边的延长线上,连接,过点作的垂线,交于点,交边的延长线于点.
(1)连接,若,求证:四边形为菱形;
(2)在(1)的条件下,求的长;
(3)设,,求关于的函数解析式,并直接写出的取值范围.
【答案】(1)见解析;(2);(3),.
【解析】
解:(1)证明:∵BD=BE,BM⊥DE∴∠DBN=∠EBN
∵四边形ABCD是矩形,AD∥BC
∴∠ DNB=∠EBN∴∠DBN=∠DNB
∴BD=DN
又∵ BD=BE∴BE=DN又∵AD∥BC∴四边形DBEN是平行四边形
又∵BD=BE ∴平行四边形DBEN是菱形
(2)由(1)可得,BE=BD==10∴CE=BE-BC=2
∴在Rt△DCE中,DE==2
由题意易得∠MBC=∠EDC,又∠DCE=∠BCD=90°
∴△BCM∽△DCE
∴∴∴BM=
(3)由题意易得∠BNA=∠EDC,∠A=∠DCE=90°
∴△NAB∽△DCE
∴
∴
∴y=,其中0
此题主要考查勾股定理和三角形相似的综合应用
9..如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)证明与推断:
①求证:四边形CEGF是正方形;
②推断:的值为 :
(2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
(3)拓展与运用:
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= .
【答案】(1)①四边形CEGF是正方形;②;(2)线段AG与BE之间的数量关系为AG=BE;(3)3
【解析】
(1)①∵四边形ABCD是正方形,
∴∠BCD=90°,∠BCA=45°,
∵GE⊥BC、GF⊥CD,
∴∠CEG=∠CFG=∠ECF=90°,
∴四边形CEGF是矩形,∠CGE=∠ECG=45°,
∴EG=EC,
∴四边形CEGF是正方形;
②由①知四边形CEGF是正方形,
∴∠CEG=∠B=90°,∠ECG=45°,
∴,GE∥AB,
∴,
故答案为;
(2)连接CG,
由旋转性质知∠BCE=∠ACG=α,
在Rt△CEG和Rt△CBA中,
=、=,
∴=,
∴△ACG∽△BCE,
∴,
∴线段AG与BE之间的数量关系为AG=BE;
(3)∵∠CEF=45°,点B、E、F三点共线,
∴∠BEC=135°,
∵△ACG∽△BCE,
∴∠AGC=∠BEC=135°,
∴∠AGH=∠CAH=45°,
∵∠CHA=∠AHG,
∴△AHG∽△CHA,
∴,
设BC=CD=AD=a,则AC=a,
则由得,
∴AH=a,
则DH=AD﹣AH=a,CH==a,
∴由得,
解得:a=3,即BC=3,
故答案为3.
【点睛】
本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.
10..如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)请直接写出线段AF,AE的数量关系 ;
(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;
(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.
【答案】(1)AF=AE;(2)AF=AE,证明详见解析;(3)结论不变,AF=AE,理由详见解析.
【解析】
解:(1)如图①中,结论:AF=AE.
理由:∵四边形ABFD是平行四边形,
∴AB=DF,
∵AB=AC,
∴AC=DF,
∵DE=EC,
∴AE=EF,
∵∠DEC=∠AEF=90°,
∴△AEF是等腰直角三角形,
∴AF=AE.
(2)如图②中,结论:AF=AE.
理由:连接EF,DF交BC于K.
∵四边形ABFD是平行四边形,
∴AB∥DF,
∴∠DKE=∠ABC=45°,
∴EKF=180°﹣∠DKE=135°,
∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,
∴∠EKF=∠ADE,
∵∠DKC=∠C,
∴DK=DC,
∵DF=AB=AC,
∴KF=AD,
在△EKF和△EDA中,
,
∴△EKF≌△EDA,
∴EF=EA,∠KEF=∠AED,
∴∠FEA=∠BED=90°,
∴△AEF是等腰直角三角形,
∴AF=AE.
(3)如图③中,结论不变,AF=AE.
理由:连接EF,延长FD交AC于K.
∵∠EDF=180°﹣∠KDC﹣∠EDC=135°﹣∠KDC,
∠ACE=(90°﹣∠KDC)+∠DCE=135°﹣∠KDC,
∴∠EDF=∠ACE,
∵DF=AB,AB=AC,
∴DF=AC
在△EDF和△ECA中,
,
∴△EDF≌△ECA,
∴EF=EA,∠FED=∠AEC,
∴∠FEA=∠DEC=90°,
∴△AEF是等腰直角三角形,
∴AF=AE.
【点睛】
本题考查四边形综合题,综合性较强.
11..如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.
(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;
(2)如图2,若DA=DE,求证:BF+DF=AF.
【答案】(1)AB=6;(2)证明见解析.
【解析】
解:(1)设BM=x,则CM=2x,BC=3x,
∵BA=BC,
∴BA=3x.
在Rt△ABM中,E为斜边AM中点,
∴AM=2BE=2.
由勾股定理可得AM2=MB2+AB2,
即40=x2+9x2,解得x=2.
∴AB=3x=6.
(2)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.
∵DF平分∠CDE,
∴∠1=∠2.
∵DE=DA,DP⊥AF
∴∠3=∠4.
∵∠1+∠2+∠3+∠4=90°,
∴∠2+∠3=45°.
∴∠DFP=90°﹣45°=45°.
∴AH=AF.
∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,
∴∠BAF=∠DAH.
又AB=AD,
∴△ABF≌△ADH(SAS).
∴AF=AH,BF=DH.
∵Rt△FAH是等腰直角三角形,
∴HF=AF.
∵HF=DH+DF=BF+DF,
∴BF+DF=AF.
【点睛】
本题是四边形的综合题,考查了正方形的性质、勾股定理、全等三角形的判定与性质及等腰直角三角形的性质等知识点,熟练运用相关知识是解决问题的关键.
12..如图1,在矩形ABCD中,E是CB延长线上一个动点,F、G分别为AE、BC的中点,FG与ED相交于点H
(1) 求证:HE=HG
(2) 如图2,当BE=AB时,过点A作AP⊥DE于点P连接BP,求的值
(3) 在(2)的条件下,若AD=2,∠ADE=30°,则BP的长为______________
【答案】(1)证明见解析;(2);(3)BP的长为
【解析】
(1)延长BC至M,且使CM=BE,连接AM,
∴△ABM≌△DCE(SAS)
∴∠DEC=∠AMB
∵EB=CM,BG=CG
∴G为EM的中点
∴FG为△AEM的中位线
∴FG∥AM
∴∠HGE=∠AMB=∠HEG
∴HE=HG
(2) 过点B作BQ⊥BP交DE于Q
由八字型可得:∠BEQ=∠BAP
∴△BEQ≌△BAP(ASA)
∴PA=QE
∴
(3) ∵∠ADE=∠CED=30°
∴CE=CD
∴BE+BC=CD+2=CD,CD=
∴DE=2CD=
∵∠ADE=30°
∴AP=EQ=1,DP=
∴PQ=-1-=
∴BP=
13..(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一条直线上,连接BE.
填空:
①∠AEB的度数为 ;
②线段AD、BE之间的数量关系为 .
(2)拓展研究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.
(3)解决问题
如图3,在正方形ABCD中,CD=2,若点P满足PD=2,且∠BPD=90°,请直接写出点A到BP的距离.
【答案】(1)①;②;(2),理由见解析;(3)点A到BP的距离为或.
【解析】
解:(1)①如图1.∵△ACB和△DCE均为等边三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.
在△ACD和△BCE中,∵,
∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC.
∵△DCE为等边三角形,∴∠CDE=∠CED=60°.
∵点A,D,E在同一直线上,
∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC﹣∠CED=60°.
故答案为60°.
②∵△ACD≌△BCE,∴AD=BE.
故答案为AD=BE.
(2)∠AEB=90°,AE=BE+2CM.
理由:如图2.∵△ACB和△DCE均为等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE.
在△ACD和△BCE中,∵,
∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC.
∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.
∵点A,D,E在同一直线上,
∴∠ADC=135°,∴∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=90°.
∵CD=CE,CM⊥DE,∴DM=ME.
∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.
(3)点A到BP的距离为或.
理由如下:
∵PD=1,∴点P在以点D为圆心,1为半径的圆上.
∵∠BPD=90°,∴点P在以BD为直径的圆上,∴点P是这两圆的交点.
①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.
∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°,∴BD=2.
∵DP=1,∴BP=.
∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD为直径的圆上,
∴∠APB=∠ADB=45°,∴△PAE是等腰直角三角形.
又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD,∴=2AH+1,∴AH=.
②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.
同理可得:BP=2AH﹣PD,∴=2AH﹣1,∴AH=.
综上所述:点A到BP的距离为或.
【点睛】
本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.而通过添加适当的辅助线从而能用(2)中的结论解决问题是解决第(3)的关键.
14..如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.
(1)直接写出点E的坐标(用含t的代数式表示): ;
(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;
(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.
【答案】(1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.
【解析】
(1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,
由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,
∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,
又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,
在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),
∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),
(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,
∴AD=t(4﹣t),
∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,
∵EG⊥x轴、FP⊥x轴,且EG=FP,
∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,
∴S四边形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,
∴当t=2时,S有最小值是16;
(3)①假设∠FBD为直角,则点F在直线BC上,
∵PF=OP<AB,
∴点F不可能在BC上,即∠FBD不可能为直角;
②假设∠FDB为直角,则点D在EF上,
∵点D在矩形的对角线PE上,
∴点D不可能在EF上,即∠FDB不可能为直角;
③假设∠BFD为直角且FB=FD,则∠FBD=∠FDB=45°,
如图2,作FH⊥BD于点H,
则FH=PA,即4﹣t=6﹣t,方程无解,
∴假设不成立,即△BDF不可能是等腰直角三角形.
15..某数学活动小组在研究三角形拓展图形的性质时,经历了如下过程:
●操作发现
在等腰△ABC中,AB=AC,分别以AB和AC为腰,向△ABC的外侧作等腰直角三角形,如图①所示,连接DE,其中F是DE的中点,连接AF,则下列结论正确的是 (填序号即可)
①AF=BC:②AF⊥BC;③整个图形是轴对称图形;④DE∥BC、
●数学思考
在任意△ABC中,分别以AB和AC为腰,向△ABC的外侧作等腰直角三角形,如图②所示,连接DE,其中F是DE的中点,连接AF,则AF和BC有怎样的数量和位置关系?请给出证明过程
●类比探索
在任意△ABC中,仍分别以AB和AC为腰,向△ABC的内侧作等腰直角三角形,如图③所示,连接DE,其中F是DE的中点,连接AF,试判断AF和BC的数量和位置关系是否发生改变?并说明理由.
【答案】操作发现:①②③④;数学思考:AF=BC,AF⊥BC,理由见解析;类比探索:AF和BC的数量和位置关系不发生改变,理由见解析
【解析】
操作发现:
如图1,延长FA交BC于G.
∵△ABD和△ACE是等腰直角三角形,且∠BAD=∠CAE=90°,∴AB=AD,AC=AE.
∵AB=AC,∴AD=AE.
∵F是DE的中点,∴AF⊥DE,∠DAF=∠EAF,∴∠BAF=∠CAF.
∵AB=AC,AF=AF,∴△FBA≌△FCA(SAS),∴FB=FC,∴FG是BC的垂直平分线,即FG⊥BC,AF⊥BC,故②正确;
∵∠AGB=∠AFD=90°,∠BAG=∠FDA,∴∠AFD≌△BGA(AAS),∴AF=BGBC,故①正确;
∵∠AFD=∠AGC=90°,∴DE∥BC,故④正确;
根据前面的证明可以得出将图形1,沿FG对折左右两部分能完全重合,∴整个图形是轴对称图形,故③正确,结论正确的有:①②③④.
故答案为:①②③④;
数学思考:
结论:AFBC,AF⊥BC,理由是:
如图2,延长AF至M,使FM=AF,连接DM、EM,延长FA交BC于G.
∵DF=EF,∴四边形DAEM是平行四边形,∴AD=EM=AB,AD∥EM,∴∠DAE+∠AEM=∠DAE+∠BAC=180°,∴∠BAC=∠AEM.
∵AC=AE,∴△CAB≌△AEM(SAS),∴AM=BC=2AF,∠AME=∠CBA,即AFBC.
∵AD∥EM,∴∠DAM=∠AME=∠CBA.
∵∠BAD=90°,∴∠DAM+∠BAG=90°,∴∠CBA+∠BAG=∠AGB=90°,∴AF⊥BC;
类比探索:
AF和BC的数量和位置关系不发生改变,理由是:
如图3,延长AF至M,使AF=FM,连接EM、DM,设AF交BC于N.
∵EF=DF,∴四边形AEMD是平行四边形,∴AE=DM=AC.
∵∠BAD+∠EAC=180°,∴∠BAC+∠EAD=180°.
∵AE∥DM,∴∠ADM+∠EAD=180°,∴∠ADM=∠BAC.
∵AB=AD,∴△ABC≌△DAM(SAS),∴AM=BC=2AF,∠DAM=∠ABC,∴AFBC.
∵∠DAM+∠BAF=∠ABC+∠BAF=90°,∴∠ANB=90°,∴AF⊥BC.
【点睛】
本题是三角形的综合题,考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,平行四边形的判定及性质的运用,解答时运用类比的方法:作辅助线构建平行四边形是解答本题的关键.
16..如图1,ABCD为正方形,将正方形的边CB绕点C顺时针旋转到CE,记∠BCE=α,连接BE,DE,过点C作CF⊥DE于F,交直线BE于H.
(1)当α=60°时,如图1,则∠BHC= ;
(2)当45°<α<90°,如图2,线段BH、EH、CH之间存在一种特定的数量关系,请你通过探究,写出这个关系式: (不需证明);
(3)当90°<α<180°,其它条件不变(如图3),(2)中的关系式是否还成立?若成立,说明理由;若不成立,写出你认为成立的结论,并简要证明.
【答案】(1)45°;(2)BH+EH=CH;(3)不成立,BH﹣EH=CH.
【解析】
解:(1)作CG⊥BH于G,如图1所示:
∵四边形ABCD是正方形,∴CB=CD,∠BCD=90°,由旋转的性质得:CE=CB,∠BCE=α=60°,∴CD=CE,∠BCG=∠ECG=∠BCE=30°.∵CF⊥DE,∴∠ECF=∠DCF=∠DCE,∴∠GCH=(∠BCE+∠DCE)=×90°=45°;故答案为45°;
(2)BH+EH=CH.理由如下:
作CG⊥BH于G,如图2所示:
同(1)得:∠BHC=45°,∴△CGH是等腰直角三角形,∴CH=GH.∵CB=CE,CG⊥BE,∴BG=EG=BE,∴BH+EH=BG+EG+EH+EH=2GH=CH;
故答案为BH+EH=CH;
(3)当90°<α<180°,其它条件不变,(2)中的关系式不成立,BH﹣EH=CH;理由如下:
作CG⊥BH于G,如图3所示:
同(2)得:∠BHC=45°,△CGH是等腰直角三角形,CH=GH,BG=EG=BE,∴BH﹣EH=BG+GH﹣EH=BG+EG﹣EH﹣EH=2GH=CH.
点睛:本题是四边形综合题目,考查了正方形的性质、旋转的性质、等腰三角形的性质、等腰直角三角形的判定与性质等知识;本题综合性强,有一定难度.
17..矩形ABCD中,DE平分∠ADC交BC边于点E,P为DE上的一点(PE<PD),PM⊥PD,PM交AD边于点M.
(1)若点F是边CD上一点,满足PF⊥PN,且点N位于AD边上,如图1所示.
求证:①PN=PF;②DF+DN=DP;
(2)如图2所示,当点F在CD边的延长线上时,仍然满足PF⊥PN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明.
【答案】(1)①证明见解析;②证明见解析;(2),证明见解析.
【解析】
解:(1)①∵四边形ABCD是矩形,∴∠ADC=90°.
又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;
∵PM⊥PD,∠DMP=45°,
∴DP=MP.
∵PM⊥PD,PF⊥PN,
∴∠MPN+∠NPD=∠NPD+∠DPF=90°,∴∠MPN=∠DPF.
在△PMN和△PDF中, ,
∴△PMN≌△PDF(ASA),
∴PN=PF,MN=DF;
②∵PM⊥PD,DP=MP,∴DM2=DP2+MP2=2DP2,∴DM=DP.
∵又∵DM=DN+MN,且由①可得MN=DF,∴DM=DN+DF,∴DF+DN=DP;
(2).理由如下:
过点P作PM1⊥PD,PM1交AD边于点M1,如图,
∵四边形ABCD是矩形,∴∠ADC=90°.
又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;
∵PM1⊥PD,∠DM1P=45°,∴DP=M1P,
∴∠PDF=∠PM1N=135°,同(1)可知∠M1PN=∠DPF.
在△PM1N和△PDF中,
∴△PM1N≌△PDF(ASA),∴M1N=DF,
由勾股定理可得:=DP2+M1P2=2DP2,∴DM1DP.
∵DM1=DN﹣M1N,M1N=DF,∴DM1=DN﹣DF,
∴DN﹣DF=DP.
【点睛】
本题为四边形的综合应用,涉及矩形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识.在每个问题中,构造全等三角形是解题的关键,注意勾股定理的应用.本题考查了知识点较多,综合性较强,难度适中.
18..在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F
(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;
(2)如图2,①求证:BP=BF;
②当AD=25,且AE<DE时,求cos∠PCB的值;
③当BP=9时,求BE•EF的值.
【答案】(1)证明见解析;(2)①证明见解析;②;③108.
【解析】
(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,
∵E是AD中点,
∴AE=DE,
在△ABE和△DCE中,,
∴△ABE≌△DCE(SAS);
(2)①在矩形ABCD,∠ABC=90°,
∵△BPC沿PC折叠得到△GPC,
∴∠PGC=∠PBC=90°,∠BPC=∠GPC,
∵BE⊥CG,
∴BE∥PG,
∴∠GPF=∠PFB,
∴∠BPF=∠BFP,
∴BP=BF;
②当AD=25时,
∵∠BEC=90°,
∴∠AEB+∠CED=90°,
∵∠AEB+∠ABE=90°,
∴∠CED=∠ABE,
∵∠A=∠D=90°,
∴△ABE∽△DEC,
∴,
设AE=x,
∴DE=25﹣x,
∴,
∴x=9或x=16,
∵AE<DE,
∴AE=9,DE=16,
∴CE=20,BE=15,
由折叠得,BP=PG,
∴BP=BF=PG,
∵BE∥PG,
∴△ECF∽△GCP,
∴,
设BP=BF=PG=y,
∴,
∴y=,
∴BP=,
在Rt△PBC中,PC=,cos∠PCB==;
③如图,连接FG,
∵∠GEF=∠BAE=90°,
∵BF∥PG,BF=PG=BP,
∴▱BPGF是菱形,
∴BP∥GF,
∴∠GFE=∠ABE,
∴△GEF∽△EAB,
∴,
∴BE•EF=AB•GF=12×9=108.
【点睛】
此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,折叠的性质,利用方程的思想解决问题是解本题的关键.
19..已知:如图1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0<t<5),解答下列问题:
(1)当为t何值时,PQ∥BC;
(2)设△AQP的面积为y(cm2),求y关于t的函数关系式,并求出y的最大值;
(3)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQP'C为菱形?若存在,求出此时t的值;若不存在,请说明理由.
【答案】(1)当t=时,PQ∥BC;(2)﹣(t﹣)2+,当t=时,y有最大值为;(3)存在,当t=时,四边形PQP′C为菱形
【解析】
(1)在Rt△ABC中,AB===10,
BP=2t,AQ=t,则AP=10﹣2t,
∵PQ∥BC,
∴△APQ∽△ABC,
∴=,即=,
解得t=,
∴当t=时,PQ∥BC.
(2)过点P作PD⊥AC于D,则有△APD∽△ABC,
∴=,即=,
∴PD=6﹣t,
∴y=t(6﹣t)=﹣(t﹣)2+,
∴当t=时,y有最大值为.
(3)存在.
理由:连接PP′,交AC于点O.
∵四边形PQP′C为菱形,
∴OC=CQ,
∵△APO∽△ABC,
∴=,即=,
∴OA=(5﹣t),
∴8﹣(5﹣t)=(8﹣t),
解得t=,
∴当t=时,四边形PQP′C为菱形.
【点睛】
本题考查四边形综合题、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题.
20..如图1,在矩形ABCD中,AD=3,DC=4,动点P在线段DC上以每秒1个单位的速度从点D向点C运动,过点P作PQ∥AC交AD于Q,将△PDQ沿PQ翻折得到△PQE. 设点P的运动时间为t(s).
(1)当点E落在边AB上时,t的值为 ;
(2)设△PQE与△ADC重叠部分的面积为s,求s与t的函数关系式;
(3)如图2,以PE为直径作⊙O.当⊙O与AC边相切时,求CP的长.
【答案】(1)(2)s=(当0<t≤2),s=(2<t≤4)(3)
【解析】
解:(1)过P作PF⊥BA于F.在△ADC中,sin∠ACD=,cos∠ACD=.∵PQ∥CA,∴∠QPD=∠ACD,tan∠ACD=.∵PD=PE=t,∴QD=,PQ=,∴EQ=QD=,AQ=.在△EFP中,∵PF=3,PE=t,∴EF=.∵∠PEQ=90°,∴∠FEP+∠EPF=90°,∠AEQ+∠EQA=90°,∴∠FEP=∠EQA,∴cos∠FEP=cos∠EQA,∴,解得:t=;
(2)当E刚好在CA上时,如图3.∵PQ∥CA,∴∠1=∠4,∠2=∠3.∵∠3=∠4,∴∠1=∠2,∴PC=PE.∵PE=PD=t,∴PC=PD=t,∴2t=4,解得:t=2.
①当时,如图1,S=S△EPQ=S△PDQ=PD•QD==;
②当时,如图4,由(2)可知,PM=PC=4-t,∴EM=t-(4-t)=2t-4.∵AC∥PQ,∴△EMN∽△EPQ,∴ .∵S△EPQ=S△PDQ=PD•QD==,∴ ,∴S==-=.
综上所述:S=
(3)如图,设切点为H,作PG⊥AC于G,连接HO并延长交PQ于F.
设CP=5x,则PG=3x,PD=PE=4-5x,
∵OF= OP, ∴HF=OH+OF=OP+OF= OP= PD=( 4-5x )
∴( 4-5x )=3x,解得:x= ,∴CP=5x=.
点睛:本题是四边形的综合题.解答时要充分利用折叠的性质,解题的关键是利用相等的角的三角函数值相等.
21..△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF,
(1)观察猜想
如图1,当点D在线段BC上时,
①BC与CF的位置关系为: .
②BC,CD,CF之间的数量关系为: ;(将结论直接写在横线上)
(2)数学思考
如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)拓展延伸
如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE,若已知AB=2,CD=BC,请求出GE的长.
【答案】(1)CF⊥BD,BC=CF+CD;(2)成立,证明详见解析;(3).
【解析】
解:(1)①正方形ADEF中,AD=AF,
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,
在△DAB与△FAC中,,
∴△DAB≌△FAC,
∴∠B=∠ACF,
∴∠ACB+∠ACF=90°,即CF⊥BD;
②△DAB≌△FAC,
∴CF=BD,
∵BC=BD+CD,
∴BC=CF+CD;
(2)成立,
∵正方形ADEF中,AD=AF,
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,
在△DAB与△FAC中,,
∴△DAB≌△FAC,
∴∠B=∠ACF,CF=BD
∴∠ACB+∠ACF=90°,即CF⊥BD;
∵BC=BD+CD,
∴BC=CF+CD;
(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,
∵∠BAC=90°,AB=AC,
∴BC=AB=4,AH=BC=2,
∴CD=BC=1,CH=BC=2,
∴DH=3,
由(2)证得BC⊥CF,CF=BD=5,
∵四边形ADEF是正方形,
∴AD=DE,∠ADE=90°,
∵BC⊥CF,EM⊥BD,EN⊥CF,
∴四边形CMEN是矩形,
∴NE=CM,EM=CN,
∵∠AHD=∠ADC=∠EMD=90°,
∴∠ADH+∠EDM=∠EDM+∠DEM=90°,
∴∠ADH=∠DEM,
在△ADH与△DEM中,,
∴△ADH≌△DEM,
∴EM=DH=3,DM=AH=2,
∴CN=EM=3,EN=CM=3,
∵∠ABC=45°,
∴∠BGC=45°,
∴△BCG是等腰直角三角形,
∴CG=BC=4,
∴GN=1,
∴EG==.
考点:四边形综合题.
22..如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.
(1)求证:AH是⊙O的切线;
(2)若OB=4,AC=6,求sin∠ACB的值;
(3)若,求证:CD=DH.
【答案】(1)证明见解析;(2);(3)证明见解析.
【解析】
(1)证明:连接OA,
由圆周角定理得,∠ACB=∠ADB,
∵∠ADE=∠ACB,
∴∠ADE=∠ADB,
∵BD是直径,
∴∠DAB=∠DAE=90°,
在△DAB和△DAE中,
,
∴△DAB≌△DAE,
∴AB=AE,又∵OB=OD,
∴OA∥DE,又∵AH⊥DE,
∴OA⊥AH,
∴AH是⊙O的切线;
(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,
∴∠E=∠ACD,
∴AE=AC=AB=6.
在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,
∴sin∠ADB==,即sin∠ACB=;
(3)证明:由(2)知,OA是△BDE的中位线,
∴OA∥DE,OA=DE.
∴△CDF∽△AOF,
∴=,
∴CD=OA=DE,即CD=CE,
∵AC=AE,AH⊥CE,
∴CH=HE=CE,
∴CD=CH,
∴CD=DH.
【点睛】
本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.
23..如图,在平面直角坐标系中,A(0,4),B(3,4),P 为线段 OA 上一动点,过 O,P,B 三点的圆交 x 轴正半轴于点 C,连结 AB, PC,BC,设 OP=m.
(1)求证:当 P 与 A 重合时,四边形 POCB 是矩形.
(2)连结 PB,求 tan∠BPC 的值.
(3)记该圆的圆心为 M,连结 OM,BM,当四边形 POMB 中有一组对边平行时,求所有满足条件的 m 的值.
(4)作点 O 关于 PC 的对称点O¢ ,在点 P 的整个运动过程中,当点O¢ 落在△APB 的内部 (含边界)时,请写出 m 的取值范围.
【答案】(1)见解析;(2)tan∠BPC=;(3)m=或 m=;(4)0≤m≤或 m=.
【解析】
(1)∵∠COA=90°,∴PC是直径,∴∠PBC=90°.
∵A(0,4)B(3,4),∴AB⊥y轴,∴当A与P重合时,∠OPB=90°,∴四边形POCB是矩形;
(2)连结OB,(如图1)
∴∠BPC=∠BOC.
∵AB∥OC,∴∠ABO=∠BOC,∴∠BPC=∠BOC=∠ABO,∴tan∠BPC=tan∠ABO;
(3)∵PC为直径,∴M为PC中点.
①如图2,当OP∥BM时,延长BM交x轴于点N.
∵OP∥BM,∴BN⊥OC于N,∴ON=NC,四边形OABN是矩形,∴NC=ON=AB=3,BN=OA=4.
设⊙M半径为r,则BM=CM=PM=r,∴MN=BN﹣BM=4﹣r.
∵MN2+NC2=CM2,∴(4﹣r)2+32=r2
解得:r,∴MN=4.
∵M、N分别为PC、OC中点,∴m=OP=2MN;
②如图3,当OM∥PB时,∠BOM=∠PBO.
∵∠PBO=∠PCO,∠PCO=∠MOC,∴∠OBM=∠BOM=∠MOC=∠MCO.
在△BOM与△COM中,∵∠BOM=∠COM,∠OBM=∠OCM,BM=CM,∴△BOM≌△COM(AAS),∴OC=OB5.
∵AP=4﹣m,∴BP2=AP2+AB2=(4﹣m)2+32.
∵∠ABO=∠BOC=∠BPC,∠BAO=∠PBC=90°,∴△ABO∽△BPC,∴,∴PC,∴PC2BP2[(4﹣m)2+32].
又PC2=OP2+OC2=m2+52,∴[(4﹣m)2+32]=m2+52
解得:m或m=10(舍去).
综上所述:m或m.
(4)∵点O与点O'关于直线对称,∴∠PO'C=∠POC=90°,即点O'在圆上.
当O'与O重合时,得:m=0;
当O'落在AB上时,得:m;
当O'与点B重合时,得:m;
∴0≤m或m.
【点睛】
本题考查了圆周角定理(同弧所对的圆周角相等),矩形的判定,勾股定理,全等三角形的判定和性质,相似三角形的判定和性质,解题涉及方程思想和分类讨论.第(2)题关键是把∠BPC进行转换;第(3)题分类讨论,设某个量为未知数,再利用勾股定理列方程来解,这是圆中已知弦长(或弦心距)求半径时常用做法;第(4)题可先把点O'到达△APB各边上为特殊位置求出m,再讨论m的范围.
24..如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.
(1)求证:CF为⊙O的切线;
(2)当BF=5,时,求BD的长.
【答案】(1)证明见解析;(2)9.
【解析】
(1)如图,连接.
∵,
∴
又∵∠3=∠1+∠2
∴
又∵,
∴
∴OC∥DB.
∵CE⊥DB,
∴.
又∵为⊙的半径,
∴为⊙O的切线.
(2)如图,连接.
在Rt△BEF中,∠BEF=90°, BF=5,,
∴.
∵OC∥BE,
∴∽.
∴
设⊙的半径为r,
∴
∴.
∵AB为⊙O直径,
∴.
∴.
∵,
∴.
∴
∴
∴.
【点睛】
本题考查了切线的判定,解直角三角形,相似三角形的判定与性质等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
25..如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.
(1)求证:PG与⊙O相切;
(2)若=,求的值;
(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.
【答案】(1)证明见解析;(2);(3)OE=2﹣4.
【解析】
(1)如图,连接OB,则OB=OD,
∴∠BDC=∠DBO,
∵∠BAC=∠BDC、∠BDC=∠GBC,
∴∠GBC=∠BDC,
∵CD是⊙O的切线,
∴∠DBO+∠OBC=90°,
∴∠GBC+∠OBC=90°,
∴∠GBO=90°,
∴PG与⊙O相切;
(2)过点O作OM⊥AC于点M,连接OA,
则∠AOM=∠COM=∠AOC,
∵,
∴∠ABC=∠AOC,
又∵∠EFB=∠OGA=90°,
∴△BEF∽△OAM,
∴,
∵AM=AC,OA=OC,
∴,
又∵,
∴;
(3)∵PD=OD,∠PBO=90°,
∴BD=OD=8,
在Rt△DBC中,BC==8,
又∵OD=OB,
∴△DOB是等边三角形,
∴∠DOB=60°,
∵∠DOB=∠OBC+∠OCB,OB=OC,
∴∠OCB=30°,
∴,=,
∴可设EF=x,则EC=2x、FC=x,
∴BF=8﹣x,
在Rt△BEF中,BE2=EF2+BF2,
∴100=x2+(8﹣x)2,
解得:x=6±,
∵6+>8,舍去,
∴x=6﹣,
∴EC=12﹣2,
∴OE=8﹣(12﹣2)=2﹣4.
【点睛】本题主要考查圆的综合问题,涉及圆周角定理、圆心角定理、相似三角形的判定与性质、直角三角形的性质等知识,熟练掌握和运用相关的性质与定理进行解题是关键.
26..在Rt△ABC中,BC=9, CA=12,∠ABC的平分线BD交AC与点D, DE⊥DB交AB于点E.
(1)设⊙O是△BDE的外接圆,求证:AC是⊙O的切线;
(2)设⊙O交BC于点F,连结EF,求的值.
【答案】(1)见详解;
(2).
【解析】
(1)证明:由已知DE⊥DB,⊙O是Rt△BDE的外接圆,
∴BE是⊙O的直径,点O是BE的中点,连结OD,
∵,∴.
又∵BD为∠ABC的平分线,∴.
∵,∴.
∴,即∴
又∵OD是⊙O的半径,
∴AC是⊙O的切线.
(2) 解:设⊙O的半径为r, 在Rt△ABC中,,
∴
∵,,∴△ADO∽△ACB.
∴.∴.
∴.∴
又∵BE是⊙O的直径.∴.∴△BEF∽△BAC
∴.
27..(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.
(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.
(3)应用:请利用(1)(2)获得的经验解决问题:
如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.
【答案】(1)证明见解析;(2)结论成立,理由见解析;(3)1秒或5秒.
【解析】
解:(1)如图1,
∵∠DPC=∠A=∠B=90°,
∴∠ADP+∠APD=90°,
∠BPC+∠APD=90°,
∴∠APD=∠BPC,
∴△ADP∽△BPC,
∴,
∴ADBC=APBP;
(2)结论ADBC=APBP仍成立;
证明:如图2,∵∠BPD=∠DPC+∠BPC,
又∵∠BPD=∠A+∠APD,
∴∠DPC+∠BPC=∠A+∠APD,
∵∠DPC=∠A=θ,
∴∠BPC=∠APD,
又∵∠A=∠B=θ,
∴△ADP∽△BPC,
∴,
∴ADBC=APBP;
(3)如下图,过点D作DE⊥AB于点E,
∵AD=BD=5,AB=6,
∴AE=BE=3
∴DE==4,
∵以D为圆心,以DC为半径的圆与AB相切,
∴DC=DE=4,
∴BC=5-4=1,
∵AD=BD,
∴∠A=∠B,
又∵∠DPC=∠A,
∴∠DPC=∠A=∠B,
由(1)(2)的经验得AD•BC=AP•BP,
又∵AP=t,BP=6-t,
∴t(6-t)=5×1,
∴t=1或t=5,
∴t的值为1秒或5秒.
【点睛】
本题考查圆的综合题.
28..如图,OA是⊙O的半径,点E为圆内一点,且OA⊥OE,AB是⊙O的切线,EB交⊙O于点F,BQ⊥AF于点Q.
(1)如图1,求证:OE∥AB;
(2)如图2,若AB=AO,求的值;
(3)如图3,连接OF,∠EOF的平分线交射线AF于点P,若OA=2,cos∠PAB=,求OP的长.
【答案】(1)证明见解析;(2);(3).
【解析】
解:(1)
∵OA⊥OE,
∴∠AOE=90°,
又∵AB是⊙O的切线,OA是⊙O的半径,
∴OA⊥AB
∴∠OAB=90°,
∴∠AOE+∠OAB =180°,
∴OE∥AB.
(2)如图2,过O点作OC⊥AF于点C,
∴AF=2AC, ∠OCA=90°,
∴∠AOC+∠OAC =90°,
又∵OA⊥AB,
∴∠OAC+∠CAB =90°,
∴∠AOC=∠CAB,
又∵BQ⊥AF,
∴∠AQB =90°,
∴∠ACO =∠AQB
又∵OA =AB,
∴△AOC≌△BAQ(AAS),
∴AC =BQ,
∴AF=2AC =2BQ,
即;
(3)如图3:过O点作OC⊥AF于点C,
由(2)得∠AOC =∠PAB,
∴,
在Rt△AOC中, OA =2,
∴OC===,
又∵OA=OF,OC⊥AF于点C,
∴∠COF=∠AOF,
又∵OP平分∠EOF,
∴∠POF=∠EOF,
∴∠POC=∠COF+∠POF=∠AOF+∠EOF=∠EOA=45°,
∴△POC为等腰直角三角形
∴.
【点睛】
本题是圆的综合题,考查了圆的有关知识,解直角三角形的性质,等腰三角形的性质,勾股定理,全等三角形的判定和性质,综合性强,难度较大.
29..平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°≤α≤180°)
(1)当α=0°时,连接DE,则∠CDE= °,CD= ;
(2)试判断:旋转过程中的大小有无变化,请仅就图2的情形给出证明;
(3)若m=10,n=8,当α=∠ACB时,求线段BD的长;
(4)若m=6,n=4,当半圆O旋转至与△ABC的边相切时,直接写出线段BD的长.
【答案】(1)90°,;(2)无变化,证明见解析;(3);(4)BD=或.
【解析】
解:(1)①如图1中,当α=0时,连接DE,则∠CDE=90°.
∵∠CDE=∠B=90°,∴DE∥AB,∴=.
∵BC=n,∴CD=.
故答案为90°,n.
(2)如图3中,∵∠ACB=∠DCE,∴∠ACE=∠BCD.
∵,∴△ACE∽△BCD,
∴.
(3)如图4中,当α=∠ACB时.
在Rt△ABC中,∵AC=10,BC=8,∴AB==6.
在Rt△ABE中,∵AB=6,BE=BC﹣CE=3,
∴AE===3,
由(2)可知△ACE∽△BCD,∴,∴=,
∴BD=.
(4)∵m=6,n=,∴CE=3,CD=2,AB==2,
①如图5中,当α=90°时,半圆与AC相切.
在Rt△DBC中,BD===2.
②如图6中,当α=90°+∠ACB时,半圆与BC相切,作EM⊥AB于M.
∵∠M=∠CBM=∠BCE=90°,
∴四边形BCEM是矩形,∴,
∴AM=5,AE==,
由(2)可知=,
∴BD=.
∴BD为2或.
【点睛】
本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.
30..如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.
(1)求证:AC=CE;
(2)求证:BC2﹣AC2=AB•AC;
(3)已知⊙O的半径为3.
①若=,求BC的长;
②当为何值时,AB•AC的值最大?
【答案】(1)证明见解析;(2)证明见解析;(3)①BC=4;②
【解析】
(1)∵四边形EBDC为菱形,
∴∠D=∠BEC,
∵四边形ABDC是圆的内接四边形,
∴∠A+∠D=180°,
又∠BEC+∠AEC=180°,
∴∠A=∠AEC,
∴AC=CE;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,
由(1)知AC=CE=CD,
∴CF=CG=AC,
∵四边形AEFG是⊙C的内接四边形,
∴∠G+∠AEF=180°,
又∵∠AEF+∠BEF=180°,
∴∠G=∠BEF,
∵∠EBF=∠GBA,
∴△BEF∽△BGA,
∴,即BF•BG=BE•AB,
∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,
∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;
(3)设AB=5k、AC=3k,
∵BC2﹣AC2=AB•AC,
∴BC=2k,
连接ED交BC于点M,
∵四边形BDCE是菱形,
∴DE垂直平分BC,
则点E、O、M、D共线,
在Rt△DMC中,DC=AC=3k,MC=BC=k,
∴DM=,
∴OM=OD﹣DM=3﹣k,
在Rt△COM中,由OM2+MC2=OC2得(3﹣k)2+(k)2=32,
解得:k=或k=0(舍),
∴BC=2k=4;
②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,
∴BC2=(2MC)2=36﹣4d2,
AC2=DC2=DM2+CM2=(3﹣d)2+9﹣d2,
由(2)得AB•AC=BC2﹣AC2
=﹣4d2+6d+18
=﹣4(d﹣)2+,
∴当d=,即OM=时,AB•AC最大,最大值为,
∴DC2=,
∴AC=DC=,
∴AB=,此时.
点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.
专练03(选择题-压轴)中考数学考点必刷题(解析版): 这是一份专练03(选择题-压轴)中考数学考点必刷题(解析版),共52页。试卷主要包含了关于二次函数,以下结论,二次函数 y=ax2+bx+c等内容,欢迎下载使用。
专练14(二次函数压轴大题)中考数学考点必刷题(解析版): 这是一份专练14(二次函数压轴大题)中考数学考点必刷题(解析版),共74页。试卷主要包含了.已知等内容,欢迎下载使用。
专练11(三角函数大题)中考数学考点必刷题(解析版): 这是一份专练11(三角函数大题)中考数学考点必刷题(解析版),共32页。试卷主要包含了)今年“五一” 假期等内容,欢迎下载使用。