开学活动
搜索
    上传资料 赚现金

    2024年高考真题数学新高考II卷数学试卷

    2024年高考真题数学新高考II卷数学试卷第1页
    2024年高考真题数学新高考II卷数学试卷第2页
    还剩2页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年高考真题数学新高考II卷数学试卷

    展开

    这是一份2024年高考真题数学新高考II卷数学试卷,共4页。试卷主要包含了选择题的作答,填空题和解答题的作答, 当时,曲线与交点个数为, 为了解推动出口后亩收入, 设函数,则等内容,欢迎下载使用。
    2024年普通高等学校招生全国统一考试(新课标I卷)
    数 学
    本试卷共10页,19小题,满分150分.
    注意事项:
    1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.
    2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.
    3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.
    4.考试结束后,请将本试卷和答题卡一并上交.
    一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.
    1. 已知集合,则( )
    A. B. C. D.
    2. 若,则( )
    A. B. C. D.
    3. 已知向量,若,则( )
    A. B. C. 1D. 2
    4. 已知,则( )
    A. B. C. D.
    5. 已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为,则圆锥的体积为( )
    A. B. C. D.
    6. 已知函数为,在R上单调递增,则a取值的范围是( )
    A. B. C. D.
    7. 当时,曲线与交点个数为( )
    A. 3B. 4C. 6D. 8
    8. 已知函数为的定义域为R,,且当时,则下列结论中一定正确的是( )
    A. B.
    C. D.
    二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.
    9. 为了解推动出口后亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值,样本方差,已知该种植区以往的亩收入服从正态分布,假设推动出口后的亩收入服从正态分布,则( )(若随机变量Z服从正态分布,)
    A. B.
    C. D.
    10. 设函数,则( )
    A. 是的极小值点B. 当时,
    C. 当时,D. 当时,
    11. 造型可以做成美丽的丝带,将其看作图中曲线C的一部分.已知C过坐标原点O.且C上的点满足横坐标大于,到点的距离与到定直线的距离之积为4,则( )
    A. B. 点在C上
    C. C在第一象限的点的纵坐标的最大值为1D. 当点在C上时,
    三、填空题:本题共 3 小题,每小题 5 分,共 15 分.
    12. 设双曲线的左右焦点分别为,过作平行于轴的直线交C于A,B两点,若,则C的离心率为___________.
    13. 若曲线在点处的切线也是曲线的切线,则__________.
    14. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.
    四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.
    15. 记内角A、B、C的对边分别为a,b,c,已知,
    (1)求B;
    (2)若的面积为,求c.
    16. 已知和椭圆上两点.
    (1)求C的离心率;
    (2)若过P的直线交C于另一点B,且的面积为9,求的方程.
    17. 如图,四棱锥中,底面ABCD,,.
    (1)若,证明:平面;
    (2)若,且二面角的正弦值为,求.
    18. 已知函数
    (1)若,且,求的最小值;
    (2)证明:曲线是中心对称图形;
    (3)若当且仅当,求的取值范围.
    19. 设m为正整数,数列是公差不为0的等差数列,若从中删去两项和后剩余的项可被平均分为组,且每组的4个数都能构成等差数列,则称数列是可分数列.
    (1)写出所有,,使数列是可分数列;
    (2)当时,证明:数列是可分数列;
    (3)从中一次任取两个数和,记数列是可分数列的概率为,证明:.

    相关试卷

    2024新高考II卷高考真题数学试卷及答案:

    这是一份2024新高考II卷高考真题数学试卷及答案,共23页。

    2024年高考真题——数学试卷(新高考II卷)含答案PDF:

    这是一份2024年高考真题——数学试卷(新高考II卷)含答案PDF,共7页。

    2024年高考真题——数学试卷(新高考II卷)解析版:

    这是一份2024年高考真题——数学试卷(新高考II卷)解析版,共25页。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map