01,2024年广东省广州市九强校九年级中考一模数学试题
展开这是一份01,2024年广东省广州市九强校九年级中考一模数学试题,共23页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
1. 的倒数是( )
A. B. C. D. 7
【答案】A
【解析】
【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.
【详解】解:∵,
∴的倒数是.
故选择A.
【点睛】本题考查倒数的定义,掌握倒数的定义是解题关键.
2. 下列计算正确的是( )
A. B.
C. D.
【答案】B
【解析】
【分析】利用合并同类项法则可判定A,利用积的乘方法则与幂的乘方法则可判定B,利用同底数幂乘法法则可判定C,利用完全平方公式可判定D.
【详解】解:A. ,故选项A计算不正确;
B. ,故选项B计算正确;
C. ,故选项C计算不正确;
D. ,故选项D计算不正确.
故选择B.
【点睛】本题考查同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式,掌握同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式是解题关键.
3. 2021年5月15日,“天问一号”着陆巡视器成功着陆于火星乌托邦平原,此时距离地球约320000000千米.数320000000科学记数法表示为( )
A. B. C. D.
【答案】B
【解析】
【分析】科学记数法形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到的后面,所以
【详解】解:
故选:
【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
4. 在平面直角坐标系中,点关于x轴对称的点的坐标是( )
A. B. C. D.
【答案】C
【解析】
【分析】关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,根据规律解答即可.
【详解】解:点关于x轴对称的点的坐标是:
故选:
【点睛】本题考查的是关于轴对称的两个点的坐标关系,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数.”是解题的关键.
5. 若某三角形的三边长分别为3,4,m,则m的值可以是( )
A. 1B. 5C. 7D. 9
【答案】B
【解析】
【分析】根据三角形的三边关系求解即可.
【详解】解:由题意,得,即,
故的值可选5,
故选:B.
【点睛】本题考查了三角形的三边关系,熟练掌握三角形的三边关系是解答的关键.
6. 甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环)及方差如下表所示;根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )
A. 甲B. 乙C. 丙D. 丁
【答案】D
【解析】
【分析】根据平均环数比较成绩的好坏,根据方差比较成绩的稳定程度.
【详解】解:甲、丙、丁射击成绩的平均环数较大,
∵丁的方差<甲的方差<丙的方差,
∴丁的成绩比较稳定,
∴成绩好且发挥稳定的运动员是丁,
故选:D.
【点睛】本题考查的是平均数和方差的意义,掌握方差反映了一组数据的波动大小,方差越大,波动越大,方差越小,数据越稳定是解题的关键.
7. 如图,四边形是菱形,点,分别在,边上,添加以下条件不能判定的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】本题考查菱形性质及全等三角形的判定,解题的关键是掌握三角形全等的判定定理.
由四边形是菱形可得:,,再根据每个选项添加的条件逐一判断.
【详解】解:由四边形是菱形可得:,,
A、添加,可用证明,故不符合题意;
B、添加,可用证明,故不符合题意;
C、添加,不能证明,故符合题意;
D、添加,可用证明,故不符合题意;
故选:C.
8. 如图,正方形四个顶点分别位于两个反比例函数和图象的四个分支上,则实数的值为( )
A. B. C. D. 3
【答案】A
【解析】
【分析】如图所示,点在上,证明,根据的几何意义即可求解.
【详解】解:如图所示,连接正方形的对角线,过点分别作轴的垂线,垂足分别为,点在上,
∵,,
∴.
∴.
∴.
∵点在第二象限,
∴.
故选:A.
【点睛】本题考查了正方形的性质,反比例函数的的几何意义,熟练掌握以上知识是解题的关键.
9. 如图,在平面直角坐标系中,,,,,将四边形向左平移个单位后,点恰好和原点重合,则的值是( )
A. 11.4B. 11.6C. 12.4D. 12.6
【答案】A
【解析】
【分析】由题意可得,的值就是线段的长度,过点作,过点作,根据勾股定理求得的长度,再根据三角形相似求得,矩形的性质得到,即可求解.
【详解】解:由题意可得,的值就是线段的长度,
过点作,过点作,如下图:
∵,
∴,
由勾股定理得
∵
∴,
又∵
∴
∴
∴,即
解得,
∵
∴
∴
∴,即
解得
由题意可知四边形为矩形,∴
故选A
【点睛】此题考查了相似三角形的判定与性质,图形的平移,矩形的判定与性质,勾股定理等,熟练掌握相关基本性质是解题的关键.
10. 已知抛物线(是常数,)经过点,当时,与其对应的函数值.有下列结论:①;②关于x的方程有两个不等的实数根;③.其中,正确结论的个数是( )
A. 0B. 1C. 2D. 3
【答案】D
【解析】
【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可
【详解】∵抛物线(是常数,)经过点,当时,与其对应的函数值.
∴c=1>0,a-b+c= -1,4a-2b+c>1,
∴a-b= -2,2a-b>0,
∴2a-a-2>0,
∴a>2>0,
∴b=a+2>0,
∴abc>0,
∵,
∴△==>0
∴有两个不等的实数根;
∵b=a+2,a>2,c=1,
∴a+b+c=a+a+2+1=2a+3,
∵a>2,
∴2a>4,
∴2a+3>4+3>7,
故选D.
【点睛】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键.
二、填空题(本大题每题3分,共18分)
11. 计算:________.
【答案】
【解析】
【分析】先根据二次根式的性质化简,再合并,即可求解.
【详解】解:.
故答案为:
【点睛】本题主要考查了二次根式的减法运算,熟练掌握二次根式的减法运算法则是解题的关键.
12. 分解因式:=__________________.
【答案】
【解析】
【详解】试题分析:原式提公因式得:y(x2-y2)=
考点:分解因式
点评:本题难度中等,主要考查学生对多项式提公因式分解因式等知识点的掌握.需要运用平方差公式.
13. 如图,点O在直线AB上,,若,则的大小为______.
【答案】30°
【解析】
【分析】根据图示,利用平角求出∠BOC的度数,然后利用垂直,即可求出∠BOD的度数.
【详解】∵,
∴.
∵,即,
∴.
故答案为:30°.
【点睛】此题考查角的运算,运用平角和垂直的定义是解题的关键.
14. 如图,二次函数(a为常数)的图象的对称轴为直线.则a的值为 _____.
【答案】3
【解析】
【分析】根据解析式,得到该抛物线与x轴的交点坐标是和,利用抛物线的对称性,进行求解即可.
【详解】解:由二次函数(a为常数),该抛物线与x轴的交点坐标是和,
∵和关于对称轴对称,对称轴为直线,
∴.
解得:,
故答案为:3.
【点睛】本题考查抛物线与轴的交点问题.熟练掌握抛物线的对称性,是解题的关键.
15. 若m,n是一元二次方程的两个实数根,则的值是______.
【答案】-3.
【解析】
【分析】先根据一元二次方程的解的定义得到,则,根据根与系数的关系得出,再将其代入整理后的代数式计算即可.
【详解】解:∵m,n是一元二次方程的两个实数根,
∴,
∴,
∴
=
=1+2×(-2)
=-3
故答案为:-3.
【点睛】本题主要考查了一元二次方程根与系数的关系:若是一元二次方程的两根时,,也考查了一元二次方程的解.
16. 如图,在平面直角坐标系中,直线与相交于A,B两点,且点A在x轴上,则弦的长为_________.
【答案】2.
【解析】
【分析】过O作OE⊥AB于C,根据垂径定理可得AC=BC=,可求OA=2,OD=,在Rt△AOD中,由勾股定理,可证△OAC∽△DAO,由相似三角形性质可求即可.
【详解】解:过O作OE⊥AB于C,
∵AB为弦,
∴AC=BC=,
∵直线与相交于A,B两点,
∴当y=0时,,解得x=-2,
∴OA=2,
∴当x=0时,,
∴OD=,
在Rt△AOD中,由勾股定理,
∵∠ACO=∠AOD=90°,∠CAO=∠OAD,
∴△OAC∽△DAO,
即,
∴AB=2AC=2,
故答案为2.
【点睛】本题考查直线与圆的位置关系,垂径定理,直线与两轴交点,勾股定理,三角形相似判定与性质,掌握以上知识、正确添加辅助线是解题关键.
三、解答题(本大题9题,共72分)
17. 计算:.
【答案】2
【解析】
【分析】本题考查了实数的混合运算,熟练掌握实数的性质,零指数幂的意义,特殊角的三角函数值是解答本题的关键.先根据实数的性质,零指数幂的意义,特殊角的三角函数值计算,再算加减即可.
【详解】解:
18. 如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE
【答案】证明见详解.
【解析】
【分析】根据“ASA”证明△ABE≌△ACD,然后根据全等三角形的对应边相等即可得到结论.
【详解】证明:在△ABE和△ACD中,
∵,
△ABE≌△ACD (ASA),
∴AE=AD,
∴BD=AB–AD=AC-AE=CE.
【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
19. 先化简,再求值:,其中.
【答案】,
【解析】
【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把的值代入计算即可求出值.
【详解】解:
,
当时,原式.
【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.
20. 某年级随机选出一个班的初赛成绩进行统计,得到如下统计图表,已知在扇形统计图中D段对应扇形圆心角为.
(1)在统计表中,______,______,______;
(2)若统计表A段的男生比女生少1人,从A段中任选2人参加复赛,用列举法求恰好选到1名男生和1名女生的概率.
【答案】(1)5,,15
(2)
【解析】
【分析】(1)根据扇形统计图中D段对应扇形圆心角为,D段人数为10人,可求出总人数,即可求出b,c,a的值;
(2)通过列举所选情况可知:共20种结果,并且它们出现的可能性相等,其中其中恰好选到1名男生和1名女生的结果有12种,然后根据概率公式即可得出答案.
【小问1详解】
解:总人数为:(人,
∴,(人,
∴(人,
故答案为:5,,15;
【小问2详解】
解:由(1)可知:段有男生2人,女生3人,
记2名男生分别为男1,男2;记3名女生分别为女1,女2,女3,
共20种结果,并且它们出现的可能性相等,
其中恰好选到1名男生和1名女生的结果有12种,
即恰好选到1名男生和1名女生的概率的概率为.
21. 如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于点,与x轴相交于点B.
(1)求反比例函数的表达式;
(2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当是以为底的等腰三角形时,求直线的函数表达式及点C的坐标.
【答案】(1);(2),点C的坐标为
【解析】
【分析】(1)先求出A点坐标,再用待定系数法即可求解;
(2)根据已知条件求出B坐标,再求出D的坐标,然后用待定系数法求出解析式,再联立解析解出即可
【详解】(1)将点的坐标代入一次函数表达式并解得:a=2,
故,
将点A的坐标代入反比例函数表达式并解得:k=6,
故反比例函数表达式为:y(x>0) ;
(2)∵
∴
∵是以为底的等腰三角形,
∴
设一次函数AD的表达式为:y=kx+b
得:
解得:
∴解析式为:
联立反比例函数和直线AD的解析式得
解得(舍去)或
∴点C的坐标为.
【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,要注重数形结合,把函数转化成方程,体现了方程思想,综合性较强.
22. 某工艺厂为商城制作甲、乙两种木制工艺品,甲种工艺品不少于400 件,乙种工艺品不少于680件.该厂家现准备购买、两类原木共150根用于工艺品制作,其中,1根类原木可制作甲种工艺品4件和乙种工艺品2件,1根类原木可制作甲种工艺品2件和乙种工艺品6件.
(1)该工艺厂购买类原木根数可以有哪些?
(2)若每件甲种工艺品可获得利润50元,每件乙种工艺品可获得利润80元,那么该工艺厂购买、两类原木各多少根时获得利润最大,最大利润是多少?
【答案】(1)50、51、52、53、54、55;(2)50根,100根,最大利润为76000
【解析】
【分析】(1)设工艺厂购买类原木根, 类原木(150-x),根类原木可制作甲种工艺品4件+(150-x)根类原木可制作甲种工艺品2(150-x))件不少于400,根类原木可制作乙种工艺品2件+(150-x)根类原木可制作乙种工艺品6(150-x)件不少于680列不等式组,求出范围即可;
(2)设获得利润为元,根据每件甲利润乘以甲件数+每件乙利润乘以乙件数列出函数,根据函数性质即可求解.
【详解】解:(1)设工艺厂购买类原木根, 类原木(150-x)根
由题意可得,
可解得,
∵为整数,
∴,51,52,53,54,55.
答:该工艺厂购买A类原木根数可以是:50、51、52、53、54、55.
(2)设获得利润元,
由题意,,
即.
∵,
∴随的增大而减小,
∴时,取得最大值76000.
∴购买A类原木根数50根,购买B类原木根数100根,取得最大值76000元.
【点睛】本题考查列不等式组解应用题,一次函数的增减性质求最值,掌握列不等式组解应用题方法与步骤,利用一次函数的增减性质求最值方法是解题关键.
23. 如图,中,.
(1)作点A关于的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)所作的图中,连接,连接,交于点O.
①求证:四边形是菱形;
②取的中点E,连接,若,求点E到的距离.
【答案】(1)见解析 (2)①见解析;②点E到的距离是
【解析】
【分析】(1)根据点关于直线的对称点的画法,过点A作的垂线段并延长一倍,得对称点C;
(2)①根据菱形的判定即可求解;②过B点作于F,根据菱形的性质,勾股定理得到再根据三角形面积公式即可求解.
【小问1详解】
解:如图所示:点C即为所求;
【小问2详解】
解:①证明:∵,
∴,
∵C是点A关于的对称点,
∴,
∴,
∴四边形是菱形;
②过B点作于F,
∵四边形是菱形,
∴,
∵E是的中点,,
∴,
∴
∴,
∵四边形是菱形,
∴,
∵
∴,
∴
∵
故点E到的距离是.
【点睛】此题主要考查了基本作图以及轴对称变换的作法、菱形的判定与性质,直角三角形的性质,勾股定理,三角形面积等知识,得出,的长是解题关键.
24. 如图,为的直径,C为上一点,连接,D为延长线上一点,连接,且.
(1)求证:是的切线;
(2)若的半径为,的面积为,求的长;
(3)在(2)的条件下,E为上一点,连接交线段于点F,若,求的长.
【答案】(1)见解析;(2);(3)
【解析】
【分析】(1)连接.可证得,从而得是的切线;
(2)过点C作于点M,可得,再证明△COM∽△DOC,进而得到;
(3)过点E作于点N,连接,证明△FCM∽△FEN,利用相似可得,再证明Rt△COM≌Rt△OEN,通过全等可得ON=CM=2,进而根据已知条件得到.
【详解】(1)证明:连接,
∵AB为⊙O直径,
∴∠ACB=90°,
∴∠CAB+∠CBO=90°,
又∵OB=OC,
∴∠CBO=∠BCO,
∴∠CAB+∠BCO=90°
∵∠BCD=∠A,
∴∠BCD+∠BCO=90°,
∴OC⊥CD
∴CD为⊙O切线;
(2)过点C作于点M,
∵的半径为,
∴AB=,
∵的面积为,
∴CM=2,
在Rt△CMO中,CO=,CM=2,
∴OM=1,
由(1)得∠OCD=∠CMO=90°,
∵∠COM=∠COD,
∴△COM∽△DOC,
∴ ,
∴,
∴,
(3)过点E作于点N,连接,
∵,,
∴△FCM∽△FEN,
∴ ,
由(2)得CM=2,OM=1,
∴EN=OM=1,
∵OC=OE,
∴Rt△COM≌Rt△OEN,
∴ON=CM=2,
∴MN=3,
∵,
∴FM=2,
∵OM=1,
∴OF=1,
∵BF=OB+OF,
∴.
【点睛】本题是圆的综合题,考查了圆周角定理,切线的判定,相似三角形的判定和性质,解答本题需要我们熟练掌握各部分的内容,要注意将所学知识贯穿起来.
25. 已知抛物线(a,c为常数,)经过点,顶点为D.
(Ⅰ)当时,求该抛物线的顶点坐标;
(Ⅱ)当时,点,若,求该抛物线的解析式;
(Ⅲ)当时,点,过点C作直线l平行于x轴,是x轴上的动点,是直线l上的动点.当a为何值时,的最小值为,并求此时点M,N的坐标.
【答案】(Ⅰ)抛物线的顶点坐标为;(Ⅱ)或;(Ⅲ)点M的坐标为,点N的坐标为
【解析】
【分析】(Ⅰ)结合题意,通过列一元一次方程并求解,即可得到抛物线的解析式,将解析式化为顶点式,即可得到答案
(Ⅱ)根据题意,得抛物线的解析式为;根据抛物线对称轴的性质,计算得点D的坐标为;过点D作轴于点G,根据勾股定理和一元二次方程的性质,得,,从而得到答案;
(Ⅲ)当时,将点向左平移3个单位长度,向上平移1个单位长度得;作点F关于x轴的对称点,当满足条件的点M落在线段上时,根据两点之间线段最短的性质,得最小,结合题意,根据勾股定理和一元二次方程性质,得,从而得直线的解析式,通过计算即可得到答案.
【详解】(Ⅰ)当时,抛物线的解析式为.
∵抛物线经过点
∴
解得:
∴抛物线的解析式为
∵
∴抛物线的顶点坐标为;
(Ⅱ)当时,由抛物线经过点,可知
∴抛物线的解析式为
∴抛物线的对称轴为:
当时,
∴抛物线的顶点D的坐标为;
过点D作轴于点G
在中,,,
∴
在中,,,
∴.
∵,即,
∴
解得:,
∴抛物线解析式为或.
(Ⅲ)当时,将点向左平移3个单位长度,向上平移1个单位长度得.
作点F关于x轴的对称点,得点的坐标为
当满足条件的点M落在线段上时,最小,
此时,.
过点作轴于点H
在中,,,
∴.
又,即.
解得:,(舍)
∴点的坐标为,点的坐标为.
∴直线的解析式为.
当时,.
∴,
∴点M的坐标为,点N的坐标为.
【点睛】本题考查了二次函数、一元一次方程、勾股定理、一元二次方程、平移、两点之间线段最短的知识;解题的关键是熟练掌握二次函数、勾股定理、一元二次方程、平移的性质,从而完成求解.甲
乙
丙
丁
9
8
9
9
1.6
0.8
3
0.8
分段
成绩范围
频数
频率
A
a
m
B
20
b
C
c
D
70分以下
10
n
男1
男2
女1
女2
女3
男1
男1男2
男1女1
男1女2
男1女3
男2
男2男1
男2女1
男2女2
男2女3
女1
女1男1
女1男2
女1女2
女1女3
女2
女2男1
女2男2
女2女1
女2女3
女3
女3男1
女3男2
女3女1
女3女2
相关试卷
这是一份2024年九强校中考数学一模试卷,共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省广州市九强校2024年九年级中考第一次考练一模数学试题(图片版),共4页。
这是一份2024年广东省广州市九强校九年级中考一模数学试题(原卷版+解析版),文件包含2024年广东省广州市九强校九年级中考一模数学试题原卷版docx、2024年广东省广州市九强校九年级中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。