2024年小升初数学专题 (通用版)-03 列方程解应用题(原卷版+解析版)
展开小学的应用题大多都可以用算术法来解题,所谓“算术法”就是指一个全部由数字和符号构成的式子,因为计算简便,成了小学六年来学生们解题的“主菜”, 即使小学里学习了方程,但也只能算是“配菜”而已。究其原因不过两种:其一先入为主(大家都是先学的算术法再学的方程法解应用);其二是小学老师为了学生尽可能多得分有意无意的希望学生多用算术法。可进入初中后就不同了:自从初一上学期详细的学习了一元一次方程后,渐渐的,凡是应用题第一反应就是设未知数列方程,而对原先的“算术法”没什么印象了。这是因为用算术法来解应用题大多要用逆向思维,而方程所用的大多是正向思维,两者孰轻孰重一目了然。
为了让学生后续方程的学习,可以引导学生理解:列方程过程中,重要的是未知数要参与运算,用等量关系列出方程。引导学生思维方式从算术思维逐步向代数思维转变,无疑是中小学数学教学衔接的重要内容。小学解方程,都按四则运算的各部分之间的关系来解,现在(初中)都是按等式的性质解方程。可以肯定的说,用等式的性质解方程,是解方程的正途。加强这一方面的教学,目的就是要有利于学生初中阶段能更好的学习稍复杂的方程。
1.列方程解应用题
(1)列方程解应用题的优点。
先用一个字母代替未知数,再把它看作已知数参与列式和运算,便于把题中的数量关系直接反映出来,使问题简单化。
(2)列方程解应用题一般步骤。
列方程解应用题的基本思路为:问题方程解答.由此可得解决此类
题的一般步骤为:审、设、列、解、检验、答.
要点诠释:
(1)“审”指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,它们之间的关系,找等量关系;
(2)“设”就是设未知数,一般求什么就设什么为x,但有时也可以间接设未知数;
(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;
(4)“解”就是解方程,求出未知数的值.
(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;
(6)“答”就是写出答案,注意单位要写清楚.
2.常见的数量关系
1)公式形数量关系
生活中许多数学应用情景涉及如周长、面积、体积等公式。在解决这类问题时,必须通过情景中的信息,准确联想有关的公式,利用有关公式直接建立等式方程。
长方形面积=长×宽 长方形周长=2(长+宽) 正方形面积=边长×边长 正方形周长=4边长
2)约定型数量关系
利息问题、利润问题、质量分数问题、比例尺问题、折扣等涉及的数量关系,像数学中的公式,但常常又不算数学公式。我们称这类关系为约定型数量关系。
3)基本数量关系
在简单应用情景中,与其他数量关系没有什么差别,但在较复杂的应用情景中,应用方法就不同了。我么把这类数量关系称为基本数量关系。
单价×数量=总价 速度×时间=路程 工作效率×时间=总工作量 现价÷原价=折数
3.分析数量关系的常用方法
1)直译法分析数量关系
将题中关键性的数量关系的语句译成含有未知数的代数式,并找出等量关系,翻译成含有未知数的等式。
2)列表分析数量关系
当题目中条件较多,关系较复杂时,要列出表格,把已知量和未知量填入表格,利用表格进行分析。这种方法的好处在于把已知量和未知量“对号入座”,便于正确理解各数量之间的关系。
3)图解法分析数量关系
用图形表示题目中的数量关系,这种方法能帮助我们透彻地理解题意,并可直观形象的体会题意。在行程问题中,我们常常用此类方法。
考点1、行程问题(相遇与追击问题)
【解题技巧】行程问题总公式:路程=速度×时间。不同类型问题,在求解速度时有所不同,具体如下:
①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间
Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.
②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间
Ⅱ.寻找相等关系:同地不同时出发:前者走的路程=追者走的路程;同时不同地出发:前者走的路程+两者相距距离=追者走的路程.
例1.(2022·山西浑源·初一期末)综合与实践:甲乙两地相距900千米,一列快车从甲地出发匀速开往乙地,速度为120千米/时;快车开出30分钟时,一列慢车从乙地出发匀速开往甲地,速度为90千米/时.设慢车行驶的时间为x小时,快车到达乙地后停止行驶,根据题意解答下列问题:(1)当快车与慢车相遇时,求慢车行驶的时间;(2)当两车之间的距离为315千米时,求快车所行的路程;
(3)①在慢车从乙地开往甲地的过程中,直接写出快慢两车之间的距离;(用含x的代数式表示)
②若第二列快车也从甲地出发匀速驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇后30分钟时,第二列快车与慢车相遇,直接写出第二列快车比第一列快车晚出发多少小时.
例2.(2022·广东郁南·初一期末)某中学学生步行到郊外旅行,七年级班学生组成前队,步行速度为4千米小时,七班的学生组成后队,速度为6千米小时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米小时.
后队追上前队需要多长时间?后队追上前队的时间内,联络员走的路程是多少?七年级班出发多少小时后两队相距2千米?
变式1.(2022·仁寿县七年级期中)甲在乙后12千米处,甲的速度为7千米/小时,乙的速度为5千米/小时,现两人同向同时出发,那么甲从出发到刚好追上乙所需要时间是( )
A.5小时B.1小时C.6小时D.2.4小时
变式2.(2022·广东七年级期末)已知A、B两站间的距离为480千米,一列慢车从A站出发,一列快车从B站出发,慢车的平均速度为60千米/时,快车的平均速度为100千米/时,如果两车同时出发,慢车在前,快车在后,同向而行,那么出发后________小时两车相距80千米.
变式3.(2022·河南·南阳市第九中学校七年级阶段练习)小莉和同学在“五一”假期去森林公园玩,在溪流边的A码头租了一艘小艇,逆流而上,划行速度8千米/时.到B地后沿原路返回,速度增加50%,回到A码头比去时少花了20分钟.求A、B两地之间的路程.
变式4.(2022·黑龙江·大庆市期末)甲乙两车分别从A、B两城同时相对开出,经过4小时,甲车行了全程的80%,乙车超过中点13千米,已知甲车比乙车每小时多行3千米,A、B两城相距多少千米?
考点2、航行问题与火车过桥问题
【解题技巧】行程问题总公式:路程=速度×时间。不同类型问题,在求解速度时有所不同,具体如下:
航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度, 顺水速度-逆水速度=2×水速;
Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.
例1.(2022·哈尔滨七年级期中)一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.若水流速度是3千米/时,则甲、乙两码头之间的距离是_____千米.
例2.(2022·四川广元·七年级期末)已知某铁路桥长1600米.现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用90秒,整列火车完全在桥上的时间是70秒.则这列火车长______米.
变式1.(2022·湖北七年级期末)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用2h,船在静水中的速度为26km/h,水速为2km/h.设A港和B港相距x km.根据题意,列出的方程是( )
A.B.C.D.
变式2.(2022·天津和平·七年级期末)某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4.5千米.一列火车以每小时120千米的速度迎面开来,测得从火车头与队首学生相遇,到车尾与队末学生相遇,共经过12秒.如果队伍长150米,那么火车长( )
A.150 米B.215米C.265 米D.310米
考点3、工程问题
【解题技巧】
我们常常把工作总量看做单位“1”,工作效率则用几分之几表示。在工程问题中,常常用“不同的对象所完成的工作量之和等于总工作量”这个关系来列写等式方程。
工程问题关键是把“一项工程”看成单位“1”,工作效率就可以用工作时间的倒数来表示。复杂的工程问题,往往需要设多个未知数,不要担心,在求解过程中,有一些未知数是可以约掉的。
例1.(2022·河南南阳·七年级期中)某厂接到一所中学的冬季校服定做任务,计划用、两台大型设备进行加工,如果单独用型设备,需要45天做完;如果单独用型设备,需要30天做完;为了同学们能及时领到冬季校服,工厂决定由两台设备同时赶制.(1)填空:型设备的工作效率是_________,型设备的工作效率是_________;(2)若两台设备同时加工10天后,型设备出了故障,暂时不能工作,如果由型设备单独完成剩下的任务,则还需要多少天?
例2.(2022·哈尔滨开学考试)某小区建完之后,需要做内墙粉刷装饰,现有甲、乙两个工程队都想承包这项工程,已知甲工程队每天能粉刷个房间,乙工程队每天能粉刷个房间.且单独粉刷这些墙面甲工程队比乙工程队要多用天,在粉刷的过程中,该开发商要付甲工程队每天费用元,付乙工程队每天费用元.(1)求这个小区共有多少间房间?(2)为了尽快完成这项工程,若先由甲、乙两个工程队按原粉刷速度合作一段时间后,甲工程队停工了,而乙工程队每天的粉刷速度提高乙工程队单独完成剩余部分,且乙工程队的全部工作时间是甲工程队的工作时间的倍还多天,求乙工程队共粉刷多少天?(3)经开发商研究制定如下方案:
方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:按(3)问方式完成;
请你通过计算帮开发商选择一种既省时又省钱的粉刷方案.
变式1.(2022·河南新乡·七年级阶段练习)已知一项工程,甲单独完成需要5天,乙单独完成需要10天,现先由甲单独做2天,然后再安排乙与甲合作完成剩下的部分,则完成这项工程共耗时( )
A.1天B.2天C.3天D.4天
变式2.(2022·仁寿县七年级期中)一项工程,甲单独做需20天完成 ,乙单独做需15天完成,现在先由甲、乙合作若干天后,剩下的部分由乙独做,先后共用12天,请问甲做了多少天?
变式3.(2022·云南大理·)列方程解应用题:在洱海保护治理工作中,洱海生态廊道建设是洱海保护体系的最后一道污染物拦截防线,也是洱海最重要的一道生态安全屏障.大理市政府于2019年启动了129公里洱海生态廊道建设.截止2020年10月止,已经完成主体建设68公里,其余61公里正在全线推进.记者了解到:其中有一段长2400米的河道需要工程队进行整治.甲工程队每天可完成35米,乙工程队每天可完成45米.(1)若该任务由甲、乙两个工程队合作完成,请问整治这段河道任务用了多少天?
(2)若在前期,由于乙工程队需要机械维修,则先由甲工程队单独整治一段时间,剩下的工程由甲、乙两队来合作完成.整治完了全部河道共用时48天,求甲、乙工程队分别整治了多少米的河道?
考点4、分段计费问题
【解题技巧】此类题型,收费往往因为不同的分段,标准会不一样。因此,在列写此类问题的等式方程时,需要先依据题意将路程进行合理分段,然后在按照不同分段中的收费标准列写等式方程。
常见试题背景:水费、电费、气费、车费、纳税、社保医保体系等
例1.(2022·浙江七年级期中)我国最新的个人所得税“起征点”是5000元,即月工资超过5000元的部分需要缴纳税收,具体如下表.其中应纳税所得额=月工资-5000-专项扣除金额-依法确定的其他扣除金额.
(1)某员工的应纳税所得额为4000元,求该员工缴纳的税额是多少?
(2)我国专项扣除的常见项目及金额如下:①每个子女教育扣除2000元;②住房贷款扣除2000元;③赡养每位老人扣除2000元.某公司一技术专家的月工资是40000元,他有1个读初中的子女、一套住房的贷款和赡养2位老人,则该技术专家缴纳的税额是多少元?
(3)公益捐赠属于依法确定的其他扣除项目,在(2)的基础上,该技术专家在三月份参加了公益捐赠活动后,实际收入33610元,求该技术专家在三月份捐赠了多少元?
例2.(2022·辽宁铁岭·七年级期末)甲、乙两家超市以相同的价格出售相同的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出200元之后,超出部分按8折优惠;在乙超市累计购买商品超出100元之后,超出部分按9折优惠.设顾客预计购买x元()的商品.(1)请用含x的代数式分别表示顾客在甲、乙两家超市购物应付的费用;
(2)小明准备购买500元的商品,你认为他应该去哪家超市?请说明理由;
(3)小明购买多少元的商品时,到两家超市购物所付的费用一样?
变式1.(2022·山东·潍坊市寒亭区教学研究室二模)潍坊出租车采用阶梯式的计价收费办法如下表:
若某人一次乘车费用为26元,那么行驶里程为( )
A.13公里B.12公里C.11公里D.10公里
变式2.(2022·浙江丽水·三模)电信公司推出移动电话A,两种套餐计费方法,收费标准如下表,一个月累计通话时间记为(分).
(1)若,则选用哪种套餐话费少?通过计算说明.(2)当时,按这两种计费方法,所需的话费会相等吗?若会,求的值;若不会,说明理由.(3)用A套餐时,一个月累计通话时间410分所需的话费,若改用套餐,则可多通话多少分钟?
变式3.(2022·聊城市茌平区实验中学七年级期末)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:
(1)若一户居民七月份用电420度,则需缴电费多少元?
(2)若一户居民某月用电x度大于200且小于,则需缴电费多少元?用含x的代数式表示
(3)某户居民五、六月份共用电500度,缴电费262元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度,问该户居民五、六月份各用电多少度?
考点5、销售问题
【解题技巧】此类题型,需要我们找出利润和利润率之间的关系来列写等式方程。
实际售价=标价×打折率 利润=售价-成本(或进价)=成本×利润率
标价=成本(或进价)×(1+利润率)
注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.
例1.(2022·重庆·黔江区七年级期中)文峰文具店分两次购进一款礼品盲盒共70盒,总共花费960元,已知第一批盲盒进价为每盒15元,第二批盲盒进价为每盒12元.
(1)文具店老板计划将每盒盲盒标价20元出售,销售完第一批盲盒后,再打八折销售完第二批盲盒,按此计划该老板总共可以获得多少利润?(2)在实际销售中,该文具店老板在以(1)中标价销售完m盒后,决定搞一场促销活动,尽快清理库存.老板先将标价提高到每盒40元,再推出活动:购买两盒,第一盒七折,第二盒半价,不单盒销售.售完所有盲盒该老板共获利600元,求m的值.
例2.(2022·重庆九龙坡·七年级期中)一水果店第一次购进400kg西瓜,由于天气炎热,很快卖完.该店马上又购进了800kg西瓜,进货价比第一次每千克少了0.5元.两次进货共花费4400元.(1)第一次购进的西瓜进价每千克多少元;(2)在销售过程中,两次购进的西瓜售价相同.由于西瓜是易坏水果,从购进到全部售完会有部分损耗.第一次购进的西瓜有4%的损耗,第二次购进的西瓜有6%的损耗,该水果店售完这些西瓜共获利2984元,则每千克西瓜的售价为多少元.
变式1.(2022·河北·邢台市开元中学七年级阶段练习)两件商品都卖84元,其中一件亏本20%,另一件赢利40%,则两件商品卖后( )
A.赢利16.8元B.亏本3元C.赢利3元D.不赢不亏
变式2.(2022·重庆江津·七年级期末)在六一儿童节期间,某商家推出零食大礼包,包含薯片、辣条、果冻三种零食.礼包的成本是三种零食成本之和.每个礼包中薯片、辣条、果冻成本之比为::,其中薯片的利润率为,果冻的利润率为,且每个礼包的总利润率为,则辣条的利润率为______.
变式3.(2022·福建·福州七年级期末)某社区超市第一次用6000元购进一批甲乙两种商品,其中甲商品的件数比乙商品件数的2倍少30件,两件商品的进价和售价如下图所示:
(1)超市购进的这批货中甲乙两种商品各有多少件?
(2)该超市第二次分别以第一次同样的进价购进第二批甲乙两种商品,其中乙商品的件数是第一批乙商品件数的3倍,甲商品件数不变,甲商品按照原售价销售,乙商品在原价的基础上打折销售,第二批商品全部售出后获得的总利润比第一批获得的总利润多720元,求第二批乙商品在原价基础上打几折销售?
考点6、数字与日历问题
【解题技巧】已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为10b+a.
例1.(2022·河北沧州·七年级期末)一个两位数,十位数字是个位数字的2倍,将两个数对调后得到的新两位数与原两位数的和是99,求原两位数.设原两位数的个位数字是,根据题意可列方程为( )
A.B.
C.D.
例2.(2022·陕西西安·七年级期末)如图,在2022年元月份的月历表中,任意框出表中竖列上相邻的四个数,则这四个数的和可能是( )
A.42B.60C.78D.86
变式1.(2022·陕西·西安高新一中实验中学七年级期末)在一个3×3的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则y﹣x的值是( )
A.1B.17C.﹣1D.﹣17
变式2.(2022·河北承德·七年级期末)如图,表中给出的是某月的日历,任意选取“U”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现此月这7个数的和可能的是( )
A.106B.98C.84D.78
变式3.(2022·北京四中模拟预测)“格子乘法”作为两个数相乘的一种计算方法,最早在15世纪由意大利数学家帕乔利提出,在明代数学家程大位著的《算法统宗》一书中被称为“铺地锦”.例如:如图1,计算,将乘数46写在方格上边,乘数71写在方格右边,然后用乘数46的每位数字乘以乘数71的每位数字,将结果记入相应的方格中,最后沿斜线方向相加,得3266.如图2,用“格子乘法”计算两个两位数相乘,则______.
考点7、和、差、倍、分问题
【解题技巧】
(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.
(2)寻找相等关系:抓住关键词列方程,常见的关键词:多、少、和、差、不足、剩余以及倍,增长率等.
例1.(2022·云南红河·七年级期末)我国古代数学家著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长多少尺?
例2.(2022·福建泉州·七年级阶段练习) 为了进一步落实“双减”政策,学校积极开展社团活动,原国际象棋社团有学生64人,羽毛球社团有学生56人.在家乡著名羽毛球运动员黄东萍获得奥运冠军后学校掀起一股羽毛球热潮,有部分国际象棋社团学生转入羽毛球社团,现在国际象棋社团人数是羽毛球社团人数的一半.问有多少名学生从国际象棋社团转入羽毛球社团?
变式1.(2022·山东东营·中考真题)植树节当天,七年级1班植树300棵,正好占这批树苗总数的,七年级2班植树棵数是这批树苗总数的,则七年级2班植树的棵数是( )
A.36B.60C.100D.180
变式2.(2022·福建·泉州七年级期中)疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1916元,求其他两个年级的捐款数若设七年级捐款数为x元,则可列方程为( )
A. B. C. D.
变式3.(2022·南昌市心远中学七年级期末)《算法统宗》中记有“李白沽酒”的故事.诗云:今携一壶酒,游春郊外走.逢朋加一倍,入店饮半斗.相逢三处店,饮尽壶中酒.试问能算士:如何知原有?(古代一斗是10升)大意是:李白在郊外春游时,做出这样-条约定:遇见朋友,先到酒店里将壶里的酒增加一倍,再喝掉其中的5升酒.按照这样的约定,在第3个店里遇到朋友正好喝光了壶中的酒.求李白的酒壶中原有酒多少升.
A级(基础过关)
1.(2022·山东威海·期末)我国古代数学著作《孙子算经》中记载了这样一个有趣的数学问题:“今有五等诸侯,共分橘子60颗,人别加三颗,向五人各得几何?”题目大意是:诸侯五人,共同分60个橘子,若后面的每个人总比他前一个人多分3个,问每个人各分得多少个橘子?若设中间的那个人分得x个橘子,依题意可列方程为( )
A. B.
C. D.
2.(2022·湖南娄底·七年级期中)2022年2月6日女足亚洲杯决赛,在逆境中铿锵玫瑰没有放弃,逆转夺冠!某学校掀起一股足球热,举行了班级联赛,某班开局11场保持不败,积23分,按比赛规则,胜一场得3分,平一场得1分,则该班获胜的场数为( )
A.4B.5C.6D.7
3.(2022·杭州七年级期中)某轮船在两个码头之间航行,顺水航行需4h,逆水航行需6h,水流速度是2km/h,求两个码头之间的距离,我们可以设两个码头之间的距离为xkm,得到方程( )
A.B.C.D.
4.(2022·四川德阳·七年级期末)保险公司的汽车保险,汽车修理费是按分段赔偿,具体赔偿细则如下表.某人在汽车修理后在保险公司得到的赔偿金额是2000元,那么此人的汽车修理费是( )元.
A.2687B.2687.5C.2688D.2688.5
5.(2022·陕西·西安七年级期末)古代名菩《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何追及之?意思是:两匹马从同一地点出发,跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为( )
A.240x=150x+12×150 B.240x=150x﹣12×150 C.240(x﹣12)=150x+150 D.240x+150x=12×150
6.(2022·江苏·七年级单元测试)一个自行车队进行训练,训练时所有队员都以40km/h的速度前进,突然,6号队员以50km/h的速度独自行进,行进15km后掉转车头,仍以50km/h的速度往回骑,直到与其他队员会合.设6号队员从离队开始到与队员重新会合经过了xh,则x为( )
A.1.5B.0.75C.D.
7.(2022·甘肃·七年级期末)某个体商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件盈利25%,另一件亏本25%,则在这次买卖中,他( )
A.不赚不赔B.赔了12元C.赔了18元D.赚了18元
8.(2022·河南郑州·七年级期末)某种商品每件的进价为80元,标价为120元.为了拓展销路,商店准备打折销售,若使利润率为,设商店打x折销售,则依题意得到的方程是( )
A.B.
C.D.
10.(2022·山东临沂·七年级期末)如图是某月的日历表,在此日历表上可以用一个“十”字圈出5个数(如1,7,8,9,15).照此方法,若圈出的5个数的和为115,则这5个数中的最小数为_________.
10.(2022·山东青岛·七年级期中)一个两位数,十位上的数字比个位上的数字大1,若将个位与十位上的数字对调,得到的新数比原数大9,设个位上的数字为x,十位上的数字为y,根据题意,可列方程为:______.
11.(2022·云南文山·七年级期末)整理一批图书,如果由一个人单独做要花40小时.现先由一部分人用1小时整理,随后增加5人和他们一起又做了2小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?
12.(2022·内蒙古乌兰浩特·初一期中)有一批共享单车需要维修,维修后继续投放骑用,现有甲、乙两人做维修,甲每天维修16辆,乙每天维修的车辆比甲多8辆,甲单独维修完成这批共享单车比乙单独维修完多用20天,公司每天付甲80元维修费,付乙120元维修费.(1)问需要维修的这批共享单车共有多少辆?
(2)在维修过程中,公司要派一名人员进行质量监督,公司负担他每天10元补助费,现有三种维修方案:①由甲单独维修;②由乙单独维修;③甲、乙合作同时维修,你认为哪种方案最省钱,为什么?
13.(2021·全国·五年级期末)上午8点零8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立即回家,到家后又立刻回头去追小明,再追上他的时候,离家恰好是8千米,问这时是几点几分?
14.(2022·全国·六年级)早上水缸注满了水,白天用去了其中的20%,傍晚又用去27升,晚上用去剩下水的10%,最后剩下的水是半水缸多1升。问早上注入多少升水?
15.(2022·全国·六年级竞赛)甲、乙二人原有钱数相同,存入银行,第一年的利息为4%,存入一年后利息降至2%,甲将本钱和利息继续存入银行,而乙将一半本钱投资股市及房地产,获利20%,一年后,甲比乙赚到的钱的一半还少144元,则甲原来有多少元?
B级(能力提升)
1.(2022·浙江台州·七年级期末)在编写数学谜题时,“”内要求填写同一个数字,若“”内数字为,则列出方程正确的是( )
A. B. C. D.
2.(2022·四川内江·)2020年12月30日,连云港市图书馆新馆正式开馆.小明同学从家步行去图书馆,他以的速度行进后,爸爸骑自行车以的速度按原路追赶小明.设爸爸出发后与小明会合,那么所列方程正确的是( )
A.B.C.D.
3.(2022·陕西·西安七年级期末)甲、乙两人分别从相距2000米的A,B两地步行出发相向而行,两人速度保持不变,若两人同时出发,则他们10分钟之后相遇;若乙比甲先出发4分钟,则甲出发8分钟之后,甲乙两人相遇,则甲的速度为( )
A.70米/分钟B.80米/分钟C.90米/分钟D.100米/分钟
4.(2022·福建福州·七年级期末)姚明在一次“NBA”比赛(美国篮球联赛)中,22投14中得28分,除了3个三分球全部投中外,他还投中了______________个两分球和______________个罚球(一分球).
5.(2022·湖北恩施·七年级期末)某城市出租车收费标准如下:3下米以内(含3千米)收费5元,超过3千米的部分每千米加收2元(不足一千米按一千米计算).
(1)若乘坐出租车行驶千米(为整数),完成下列表格.
(2)周末小华的爷爷准备乘坐出租车到12千米外小华的姑姑家去,但他只有20元钱,爷爷能够全程乘坐出租车吗?如果能够,他要付多少元车费?如果不能,他至少还要步行几千米?
6.(2022·湖北房县·初一期末)“十房”天然气正在紧张施工中,从2018年1月1日起居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如下表所示,比如6口以下的户年天然气用量在第二档时,其中350立方米按2.28元/m3收费,超过350立方米的部分按2.5元/m3收费.小冬一家有五口人,他想帮父母计算一下实行阶梯价后,家里天然气费的支出情况.
(1)如果他家2018年全年使用300立方米天然气,那么需要交多少元天然气费?
(2)如果他家2018年全年使用500立方米天然气,那么需要交多少元天然气费?
(3)如果他家2018年需要交1563元天然气费,他家2018年用了多少立方米天然气?
7.(2022·重庆七年级课时练习)某中学的社团活动深受学生和家长的欢迎,社团种类多达十几种,极大地丰富了学生的业余文化生活.其中初一书法社团中女生占全社团人数的,又有10名女生申请加入,那么女生就占全社团人数的,求现在初一书法社团的人数.
8.(2022·河南信阳·七年级期末)为推进我国“碳达峰、碳中和”双碳目标的实现,各地大力推广分布式光伏发电项目.某公司计划建设一座光伏发电站,若由甲工程队单独施工需要3周,每周耗资8万元,若由乙工程队单独施工需要6周,每周耗资3万元.(1)若甲、乙两工程队合作施工,需要几周完成?共需耗资多少万元?(2)若需要最迟4周完成工程,请你设计一种方案,既保证按时完成任务,又最大限度节省资金.(时间按整周计算)
9.(2022·河北七年级专题练习)一个水池设有注水管和排水管,单独开注水管2小时可注满水池,单独开排水管3小时可将一池水排完.现向这个空水池注水,将注水管与排水管同时开放若干小时后,关上注水管,排水管排掉水池中的水所用的时间比两管同时开放的时间少10分钟.两管同时开了多少时间?
10.(2022·海南·七年级期中)某帮扶公司以每吨500元的价格收购了100吨某种药材.若直接在市场上销售,每吨的售价是1000元.该公司决定加工后再出售,相关信息如下表所示:
注:①出品率指加工后所得产品的质量与原料的质量的比值;②加工后的废品不产生效益.受市场影响,该公司必须在10天内将这批药材加工完毕,现有3种方案:
A.若全都粗加工;则粗加工合格的成品总量是 吨,粗加工销售总收入是 元,粗加工的利润是 元 ;
B.若尽可能多的精加工,其余的的直接在市场上销售;则精加工合格的成品总量是 吨,精加工销售总收入是 元,剩余未加工药材的销售总收入是 元.
C.部分粗加工,部分精加工,恰好10天完成所有药材的加工.请计算C种方案的总利润.
结论:通过3种方案的利润评估, 方案获得的利润最大.(填A 、B、C字母)
11.(2022·福建七年级期末)某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如表:(注:获利=售价-进价)
(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?
12.(2022·全国·五年级竞赛)甲乙两人比赛400米跑,甲离终点100米时,乙刚好跑到中点,照这样的速度,乙跑到终点时,比甲正好慢25秒,甲平均每秒跑多少米?
13.(2021·河北石家庄·小升初真题)一列匀速行驶的火车通过一架长1000米的桥梁用了30秒,穿越长1920米的隧道用了50秒,这列火车每秒行多少米?车身长多少米?
C级(培优拓展)
1.(2022·重庆九年级阶段练习)万盛是重庆茶叶生产基地和名优茶产地之一,以“重庆第一泡 万盛茶飘香”为主题的采茶制茶、品茶赏茶、茶艺表演活动在万盛板辽湖游客接待中心开幕,活动持续两周,活动举办方为游客准备了三款年的新茶:清明香、云雾毛尖、滴翠剑茗.第一批采制的茶叶中清明香、云雾毛尖、滴翠剑茗的数量盒之比为::.由于品质优良宣传力度大,网上的预订量暴增,举办方加紧采制了第二批同种类型的茶叶,其中清明香增加的数量占总增加数量的,此时清明香总数量达到三种茶叶总量的,而云雾毛尖和滴翠剑茗的总数量恰好相等.若清明香、云雾毛尖、滴翠剑茗三种茶叶每盒的成本分别为元、元、元,清明香的售价为每盒元,活动中将清明香的供游客免费品尝,活动结束时两批茶叶全部卖完,总利润率为,且云雾毛尖的销售单价不高于另外两种茶叶销售单价之和的,则滴翠剑茗的单价最低为______元.
2.(2022·广西平桂·期中)“壮丽70年,奋斗新时代!”国庆节期间,唐玲同学仅用3天时间就看完了一本课外读物.第二天看的页数比第一天看的页数的一半少5页,第三天看的页数刚好是第二天的2倍.设第一天看了该书的页,问:(1)用含x的代数式表示这本书的页数; (2)当x=60时,这本书的页数是多少? (3)如果这本书有225页,唐玲第二天看了多少页?
3.(2022·浙江绍兴市·七年级期中)鼓励市民节约用水,自来水公司采用阶梯收费,下表为用水收费标准.
(1)小王家6月用水,付水费25元,求的值.
(2)小王家7月用水,,用的代数式表示水费,求用水时的水费.
4.(2022·福建泉州·初一期中)某地试行医保制度,并规定:
一、每位居民年初缴纳医保基金70元;
二、居民个人当年看病的医疗费(以定点医院的医疗发票为准,年底按下表所示的方式结算)报销看病的医疗费用.
设一位居民当年看病的医疗费用为元,他个人实际承担的医疗费用(包括医疗费用中个人承担的部分和年初缴纳的医保基金)记为元.
(1)写出如下条件,的代数式(可含有).①当时;②当时.
(2)已知,若该地居民周大爷某一年个人实际承担的医疗费用是元,那么他这一年看病所花费的医疗费共多少元?
5.(2022.广东七年级期中)某桥长1200m,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s,而整个火车在桥上的时间是30s,求火车的长度和速度.
6.(2022·宁夏·银川北塔中学七年级期末)周末小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:
(1)请根据它们的对话内容,求出小明和爸爸的骑行速度;
(2)爸爸第一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸跑道上相距50米?
7.(2022·山西浑源·初一期末)七年级开展迎新年“迷你小马拉松健身跑”活动,跑步路线为学校附近一段笔直的的健身步道,全长4200米.甲、乙两名同学相约健身,二人计划沿预定路线由起点A跑向终点B.由于乙临时有事,于是甲先出发,3分钟后,乙才出发.已知甲跑步的平均速度为150米/分,乙跑步的平均速度为200米/分.根据题意解决以下问题:(1)求乙追上甲时所用的时间;(2)在乙由起点A到终点B的过程中,若设乙跑步的时间为m分,请用含m的代数式表示甲乙二人之间的距离;(3)当乙到达终点B后立即步行沿原路返回,速度降为50米/分.直接写出乙返回途中与甲相遇时甲离终点B的距离.
8.(2022·四川汶川·初一期末)某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两修理组,甲修理组单独完成任务需要天,乙修理组单独完成任务需要天.若由甲、乙两修理组同时修理,需多少天可以修好这些套桌椅?若甲、乙两修理组合作天后,甲修理组因新任务离开,乙修理组继续工作.甲完成新任务后,回库与乙又合作天,恰好完成任务.问:甲修理组离开几天?
9.(2022·广东初一课时练习)松雷中学原计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天能加工这种校服24件.且单独加工这批校服甲工厂比乙工厂要多用20天在加工过程中,学校每天需付甲工厂费用80元,乙工厂费用120元.
(1)这批校服共有多少件?(2)在实际加工过程中,甲、乙两个工厂按原生产效率合作一段时间后,甲工厂停工了,乙工厂每天的生产效率提高25%,乙工厂单独完成剩余部分,且乙工厂的全部工作时间比甲工厂工作时间的2倍还多4天,则乙工厂共加工多少天?(3)经学校研究制定如下方案:方案一:由甲工厂单独完成;方案二:由乙工厂单独完成;方案三:按第(2)问方式完成并且每种方案在加工过程中,每个工厂需要一名工程师进行技术指导,并由学校提供每天10元的午餐补助费,请你通过计算帮学校选择一种既省时又省钱的加工方案.
10.(2022·重庆八中)春节,即农历新年,是一年之岁首、传统意义上的年节.俗称新春、新年、新岁、岁旦、年禧、大年等,口头上又称度岁、庆岁、过年、过大年.春节历史悠久,由上古时代岁首祈年祭祀演变而来.为了喜迎新春,某水果店现推出水果篮和坚果礼盒,每个水果篮的成本为200元.每盒坚果礼盒的成本为150元,每个水果篮的售价比每盒坚果的售价多100元,售卖1个水果篮获得的利润和售卖2盒坚果礼盒获得的利润一样多.(1)求每个水果篮和每盒坚果礼盒的售价.(2)在年末时,该水果店购进水果篮1250个和坚果礼盒1200盒,进行“新春特惠”促销活动,水果店规定,每人每次最多购买水果篮1个或坚果礼盒1盒.水果篮每个售价打九折后再参与店内“每满100元减m元”的活动,坚果礼盒每盒直接参与店内“每满100元减m元”的活动;售卖结束时,坚果礼盒全部售卖完,售卖过程中由于部分水果变质导致水果篮有50个没办法售出.若该水果店获得的利润率为20%,求m的值.
11.(2022·福建·厦门市七年级期中)某次篮球联赛积分榜如下表所示:
(1)通过观察积分表,填空:胜一场得 分,负一场得 分.
(2)雄鹰队也参加了本次篮球联赛,获得积分25分,问雄鹰队的胜、负场次情况.
(3)联赛中还有一个队伍,队长电话向当地组织者汇报,说队伍在比赛中获得胜场和负场的积分一样多,请你通过数学计算判断该队长是否说谎.
12.(2022·湖北荆门·七年级期中)观察下列三行数:
(1)每行的第9个数分别为 , , .
(2)如图,用一个长方形方框框住六个数,左右移动方框,若方框中的六个数左上角数记为x,求这六个数的和(结果用含x式子表示并化简).
(3)第三行是否存在连续的三个数的和为381,若存在,求这三个数,若不存在,请说明理由?
13.(2022·山东·六年级期末)公园里新建了一个“花鸟乐园”。如图,冬冬和小刚站在点A处,打算绕“花鸟乐园”外围步行一圈。小刚说:“冬冬,我们背向而行,看看待会儿会在哪个地方相遇。”说完小刚就出发了。而冬冬观赏了一会儿小鸟,等小刚走到B点,他才出发。已知小刚和冬冬的速度比是5∶6,当他俩相遇时,小刚和冬冬所走的路程比是5∶4。这个“花鸟乐园”一周的长度是多少米?(冬冬和小刚的速度不变)
2020年个人所得税税率表(工资薪金所得适用)
级数
应纳税所得额
税率
1
0至3000元的部分
3%
2
超过3000元至12000元的部分
10%
3
超过12000元至25000元的部分
20%
4
超过25000元至35000元的部分
25%
5
超过35000元至55000元的部分
30%
行驶里程
计费方法
不超过3公里
起步价8元
超过3公里且不超过7公里的部分
每公里按标准租费收费
超过7公里且不超过25公里的部分
每公里再加收标准租费的50%
超过25公里且不超过100公里的部分
每公里再加收标准租费的75%
超过100公里的部分
每公里再加收标准租费的100%
说明:行驶里程不足1公里,按1公里计算;
行驶里程超过3公里时的标准租费为1.8元/公里.
A计费方法
计费方法
月租费(元/月)
58
88
不加收通话费时限(分)
150
350
超时部分加收通话费标准(元/分)
0.25
0.20
档次
每户每月用电数度
执行电价元度
第一档
小于等于200部分
第二档
大于200且小于等于400部分
第三档
大于400部分
甲
乙
进价(元/件)
22
30
售价(元/件)
29
40
汽车修理费x元
赔偿率
0<x≤500
60%
500<x≤1000
70%
1000<x≤3000
80%
…
…
行驶里程(千米)
应付车费(元)
工艺
每天可加工药材数量(吨)
成品率
售价(元/吨)
粗加工
14
80%
5000
精加工
6
60%
11000
甲
乙
进价(元/件)
22
30
售价(元/件)
29
40
用水量(立方米)
水费到户价格(元/立方米)
不超过14的部分
超过14到30的部分
……
……
居民个人当年看病的医疗费用
医疗费用报销办法
不超过 n 元的部分
全部由医保基金承担(即全额报销)
超过 n 元但不超过 6 000 元的部分
个人承担,其余由医保基金承担
超过 6 000 元的部分
个人承担其余由医保基金承担
队名
比赛场次
胜场
负场
积分
前进
14
10
4
24
东方
14
9
5
23
远大
14
7
7
21
恒大
14
4
10
18
蓝天
14
0
14
14
2024年小升初数学专题 (通用版)-15 整式的相关概念(原卷版+解析版): 这是一份2024年小升初数学专题 (通用版)-15 整式的相关概念(原卷版+解析版),文件包含2024年小升初数学专题通用版-15整式的相关概念原卷版docx、2024年小升初数学专题通用版-15整式的相关概念解析版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
2024年小升初数学专题 (通用版)-08 绝对值(原卷版+解析版): 这是一份2024年小升初数学专题 (通用版)-08 绝对值(原卷版+解析版),文件包含2024年小升初数学专题通用版-08绝对值原卷版docx、2024年小升初数学专题通用版-08绝对值解析版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
2024年小升初数学专题 (通用版)-02 式与方程(原卷版+解析版): 这是一份2024年小升初数学专题 (通用版)-02 式与方程(原卷版+解析版),文件包含2024年小升初数学专题通用版-02式与方程原卷版docx、2024年小升初数学专题通用版-02式与方程解析版docx等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。