强化训练湖南省常德市中考数学模拟测评 卷(Ⅰ)(精选)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是( )
A.abB.a+bC.abD.a
2、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
A.B.C.D.
3、如图,已知与都是以A为直角顶点的等腰直角三角形,绕顶点A旋转,连接.以下三个结论:①;②;③;其中结论正确的个数是( )
A.1B.2C.3D.0
4、如图,已知二次函数的图像与x轴交于点,对称轴为直线.结合图象分析下列结论:①;②;③;④一元二次方程的两根分别为;⑤若为方程的两个根,则且.其中正确的结论个数是( )
A.2个B.3个C.4个D.5个
5、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.1B.2020C.2021D.2022
6、利用如图①所示的长为a、宽为b的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )
A.B.
C.D.
7、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为( )
A.B.C.D.
8、如图是一个正方体的展开图,现将此展开图折叠成正方体,有“北”字一面的相对面上的字是( )
A.冬B.奥C.运D.会
9、单项式的次数是( )
A.1B.2C.3D.4
10、如图,在中,D是延长线上一点,,,则的度数为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
1、计算:__.
2、如图,小张同学用两个互相垂直的长方形制作了一个“中”字,请根据图中信息用含x的代数式表示该“中”字的面积__________.
3、已知关于x的一元二次方程.若此方程有两个相等的实数根,则实数k的值为______;若此方程有两个实数根,则实数k的取值范围为______.
4、如图,在边长相同的小正方形组成的网格中,点A、B、O都在这些小正方形的顶点上,那么sin∠AOB的值为______.
5、已知点P是线段AB的黄金分割点,AP>PB.若AB=2,则AP=_____.
三、解答题(5小题,每小题10分,共计50分)
1、已知四边形 是菱形, , 点 在射线 上, 点 在射线 上,且 .
(1)如图, 如果 , 求证: ;
(2)如图, 当点 在 的延长线上时, 如果 , 设 , 试建立 与 的函数关系式,并写出 的取值范围
(3)联结 , 当 是等腰三角形时,请直接写出 的长.
2、如图,三角形中,点D在上,点E在上,点F,G在上,连接.己知,,求证:.
将证明过程补充完整,并在括号内填写推理依据.
证明:∵_____________(已知)
∴(_______________________)
∴.________(____________________)
∵(已知)
∴________(等量代换)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴(___________________)
3、一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.
(1)随机摸取一个小球的标号是奇数,该事件的概率为_______;
(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出的小球标号相同的概率.
4、如图,在平面直角坐标系中,,,.
(1)在图中作出关于轴的对称图形,并直接写出点的坐标;
(2)求的面积;
(3)点与点关于轴对称,若,直接写出点的坐标.
5、计算:.
-参考答案-
一、单选题
1、B
【分析】
先证明点E在射线CE上运动,由AF为定值,所以当AE+EF最小时,△AEF周长的最小,
作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.
【详解】
解:∵△ABC、△ADE都是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴∠ABD=∠ACE,
∵AF=CF,
∴∠ABD=∠CBD=∠ACE=30°,
∴点E在射线CE上运动(∠ACE=30°),
作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的值最小,此时AE+FE=MF,
∵CA=CM,∠ACM=60°,
∴△ACM是等边三角形,
∴△ACM≌△ACB,
∴FM=FB=b,
∴△AEF周长的最小值是AF+AE+EF=AF+MF=a+b,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选:B.
【点睛】
此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.
2、D
【分析】
根据题意得出∠1=15°,再求∠1补角即可.
【详解】
由图形可得
∴∠1补角的度数为
故选:D.
【点睛】
本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
3、B
【分析】
证明△BAD≌△CAE,由此判断①正确;由全等的性质得到∠ABD=∠ACE,求出∠ACE+∠DBC=45°,依据,推出,故判断②错误;设BD交CE于M,根据∠ACE+∠DBC=45°,∠ACB=45°,求出∠BMC=90°,即可判断③正确.
【详解】
解:∵与都是以A为直角顶点的等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴,故①正确;
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∵∠ABD+∠DBC=45°,
∴∠ACE+∠DBC=45°,
∵,
∴,
∴不成立,故②错误;
设BD交CE于M,
∵∠ACE+∠DBC=45°,∠ACB=45°,
∴∠BMC=90°,
∴,故③正确,
故选:B.
【点睛】
此题考查了三角形全等的判定及性质,等腰直角三角形的性质,熟记三角形全等的判定定理及性质定理是解题的关键.
4、C
【分析】
根据图像,确定a,b,c的符号,根据对称轴,确定b,a的关系,当x=-1时,得到a-b+c=0,确定a,c的关系,从而化简一元二次方程,求其根即可,利用平移的思想,把y=· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
的图像向上平移1个单位即可,确定方程的根.
【详解】
∵抛物线开口向上,
∴a>0,
∵抛物线与y轴的交点在y轴的负半轴上,
∴c<0,
∵抛物线的对称轴在y轴的右边,
∴b<0,
∴,
故①正确;
∵二次函数的图像与x轴交于点,
∴a-b+c=0,
根据对称轴的左侧,y随x的增大而减小,
当x=-2时,y>0即,
故②正确;
∵,
∴b= -2a,
∴3a+c=0,
∴2a+c=2a-3a= -a<0,
故③正确;
根据题意,得,
∴,
解得,
故④错误;
∵=0,
∴,
∴y=向上平移1个单位,得y=+1,
∴为方程的两个根,且且.
故⑤正确;
故选C.
【点睛】
本题考查了抛物线的图像与系数的符号,抛物线的对称性,抛物线与一元二次方程的关系,抛物线的增减性,平移,熟练掌握抛物线的性质,抛物线与一元二次方程的关系是解题的关键.
5、D
【分析】
根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和.
【详解】
解:如图,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
由题意得:SA=1,
由勾股定理得:SB+SC=1,
则 “生长”了1次后形成的图形中所有的正方形的面积和为2,
同理可得:
“生长”了2次后形成的图形中所有的正方形面积和为3,
“生长”了3次后形成的图形中所有正方形的面积和为4,
……
“生长”了2021次后形成的图形中所有的正方形的面积和是2022,
故选:D
【点睛】
本题考查了勾股数规律问题,找到规律是解题的关键.
6、A
【分析】
整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.
【详解】
∵大正方形边长为:,面积为:;
1个小正方形的面积加上4个矩形的面积和为:;
∴.
故选:A.
【点睛】
此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.
7、A
【分析】
作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.
【详解】
解:如图,作点A关于x轴的对称点,则PA=,
∴≤(当P、、B共线时取等号),
连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
设直线的函数表达式为y=kx+b,
将(1,-1)、B(2,-3)代入,得:
,解得:,
∴y=-2x+1,
当y=0时,由0=-2x+1得:x=,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴点P坐标为(,0),
故选:A
【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
8、D
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“京”与“奥”是相对面,
“冬”与“运”是相对面,
“北”与“会”是相对面.
故选:D.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
9、C
【分析】
单项式中所有字母的指数和是单项式的次数,根据概念直接作答即可.
【详解】
解:单项式的次数是3,
故选C
【点睛】
本题考查的是单项式的次数的含义,掌握“单项式中所有字母的指数和是单项式的次数”是解本题的关键.
10、B
【分析】
根据三角形外角的性质可直接进行求解.
【详解】
解:∵,,
∴;
故选B.
【点睛】
本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.
二、填空题
1、
【解析】
【分析】
先得出最简公分母为12,再进行通分和约分运算即可求出答案.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:原式
.
【点睛】
本题考查了有理数的加减混合运算,对于异分母分数的加减混合运算,先要通分转化成同分母分数的加减混合运算是解决问题的关键.
2、27x-27##-27+27x
【解析】
【分析】
用两个互相垂直的长方形的面积之和减去重叠部分长方形的面积即可求解.
【详解】
解:“中”字的面积=3×3x+9×2x-3×9=9x+18x-27=27x-27,
故答案为:27x-27
【点睛】
此题考查列代数式,掌握长方形的面积表示方法是解答此题的关键.
3、 9
【解析】
【分析】
根据根的判别式的意义得Δ=62-4k=0,解方程即可;根据根的判别式的意义得Δ=62-4k≥0,然后解不等式即可.
【详解】
解:Δ=62-4k=36-4k,
∵方程有两个相等的实数根,
∴Δ=36-4k=0,
解得:k=9;
∵方程有两个实数根,
∴Δ=36-4k≥0,
解得:k≤9;
故答案为:9;k≤9.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.
4、
【解析】
【分析】
如图,过点B向AO作垂线交点为C,勾股定理求出,的值,求出的长,求出值即可.
【详解】
解:如图,过点B向AO作垂线交点为C,O到AB的距离为h
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵,,,
∴
故答案为:.
【点睛】
本题考查了锐角三角函数值,勾股定理.解题的关键是表示出所需线段长.
5、##
【解析】
【分析】
根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.
【详解】
解:由于P为线段AB=2的黄金分割点,且AP是较长线段;
则AP=2×=,
故答案为:.
【点睛】
本题考查了黄金分割点即线段上一点把线段分成较长和较短的两条线段,且较长线段的平方等于较短线段与全线段的积,熟练掌握黄金分割点的公式是解题的关键.
三、解答题
1、
(1)证明过程详见解答;
(2)
(3)或
【分析】
(1)先证明四边形是正方形,再证明,从而命题得证;
(2)在上截取,先证明是正三角形,再证明,进一步求得结果;
(3)当时,作于,以为圆心,为半径画弧交于,作于,证明,,可推出,再证明,可推出,从而求得,当时,作于,以为圆心,为半径画弧交于,作于,作于,先根据求得,进而求得,根据,,和,从而求得,根据三角形三边关系否定,从而确定的结果.
(1)
解:证明:四边形是菱形,,
菱形是正方形,
,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
,
;
(2)
解:如图1,
在上截取,
四边形是菱形,
,,
是正三角形,
,,
,,
,
,
,
;
(3)
如图2,
当时,作于,以为圆心,为半径画弧交于,作于,
,,,,
,
四边形是菱形,
,
,,
,
①,
,
,
,
②,
由①②得,
,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
如图3,
当时,作于,以为圆心,为半径画弧交于,作于,
作于,
,
,
由得,
,
,
,
由第一种情形知:,,
,,
①,②,
由①②得,
,
,
,
,
即,
综上所述:或.
【点睛】
本题考查了菱形性质,正方形的判定和性质,相似三角形的判定和性质,面积法等知识,解题的关键是作辅助线,构造相似三角形.
2、,同旁内角互补,两直线平行,,两直线平行,内错角相等,,同位角相等,两直线平行
【分析】
先由,证明,可得,结合已知条件证明,再证明即可.
【详解】
解:证明:∵(已知)
∴(同旁内角互补,两直线平行)
∴.(两直线平行,内错角相等)
∵(已知)
∴(等量代换)
∴(同位角相等,两直线平行)
【点睛】
本题考查的是平行线的判定与性质,掌握“平行线的判定方法”是解本题的关键.
3、
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)
(2)(两次取出的小球标号相同)
【分析】
(1)直接由概率公式求解即可;
(2)画树状图,共有9种等可能的结果,两次取出小球标号相同的结果有3种,再由概率公式求解即可.
(1)
∵在1,2,3三个数中,其中奇数有1,3共2个数,
∴随机摸取一个小球的标号是奇数,该事件的概率为
故答案为:;
(2)
画树状图如下:
由树状图可知,随机摸取一个小球后放回,再随机摸取一个小球,共有9种等可能的结果,其中两次取出的小球标号相同的结果共有3种,
∴(两次取出的小球标号相同).
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
4、
(1)见详解;(−2,1);
(2)8.5;
(3)P(5,3)或(−1,−3).
【分析】
(1)画出△A1B1C1,据图直接写出C1坐标;
(2)先求出△ABC外接矩形CDEF面积,用之减去三个直角三角形的面积,得△ABC的面积;
(3)先根据P,Q关于x轴对称,得到Q的坐标,再构建方程求解即可.
(1)
解:如图1
△A1B1C1就是求作的与△ABC关于x轴对称的三角形,点C1的坐标(−2,1);
(2)
解:如图2
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
由图知矩形CDEF的面积:5×5=25
△ADC的面积:×4×5=10
△ABE的面积:×1×3=
△CBF的面积:×5×2=5
所以△ABC的面积为:25-10--5=8.5.
(3)
解:∵点P(a,a−2)与点Q关于x轴对称,
∴Q(a,2−a),
∵PQ=6,
∴|(a-2)-(2-a)|=6,解得:a=5或a=-1,
∴P(5,3)或(−1,−3).
【点睛】
本题考查了作图−轴对称变换,三角形的面积等知识,解题的关键是理解题意,掌握关于坐标轴对称的两点的坐标特征,属于中考常考题型.
5、
【分析】
先根据二次根式的性质计算,然后合并即可.
【详解】
解:
.
【点睛】
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
中考强化训练湖南省常德市中考数学模拟专项测试 B卷: 这是一份中考强化训练湖南省常德市中考数学模拟专项测试 B卷,共21页。试卷主要包含了不等式的最小整数解是,和按如图所示的位置摆放,顶点B,一元二次方程的根为.等内容,欢迎下载使用。
中考强化训练湖南省常德市中考数学模拟专项测评 A卷: 这是一份中考强化训练湖南省常德市中考数学模拟专项测评 A卷,共31页。试卷主要包含了如图,在中,,,,则的度数为,如图,有三块菜地△ACD等内容,欢迎下载使用。
中考强化训练湖南省常德市中考数学考前摸底测评 卷(Ⅱ)(含答案及解析): 这是一份中考强化训练湖南省常德市中考数学考前摸底测评 卷(Ⅱ)(含答案及解析),共26页。