终身会员
搜索
    上传资料 赚现金

    中考数学二轮重难点复习讲义模型17 阿氏圆最值问题(2份打包,原卷版+解析版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      中考数学二轮重难点复习讲义模型17 阿氏圆最值问题(原卷版) .doc
    • 解析
      中考数学二轮重难点复习讲义模型17 阿氏圆最值问题(解析版) .doc
    中考数学二轮重难点复习讲义模型17 阿氏圆最值问题(原卷版) 第1页
    中考数学二轮重难点复习讲义模型17 阿氏圆最值问题(原卷版) 第2页
    中考数学二轮重难点复习讲义模型17 阿氏圆最值问题(原卷版) 第3页
    中考数学二轮重难点复习讲义模型17 阿氏圆最值问题(解析版) 第1页
    中考数学二轮重难点复习讲义模型17 阿氏圆最值问题(解析版) 第2页
    中考数学二轮重难点复习讲义模型17 阿氏圆最值问题(解析版) 第3页
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学二轮重难点复习讲义模型17 阿氏圆最值问题(2份打包,原卷版+解析版)

    展开

    这是一份中考数学二轮重难点复习讲义模型17 阿氏圆最值问题(2份打包,原卷版+解析版),文件包含中考数学二轮重难点复习讲义模型17阿氏圆最值问题原卷版doc、中考数学二轮重难点复习讲义模型17阿氏圆最值问题解析版doc等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。


    背景故事:“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.
    模型建立:当点P在一个以O为圆心,r为半径的圆上运动时,如图所示:
    易证:△BOP∽△POA, SKIPIF 1 < 0 ,∴对于圆上任意一点P都有 SKIPIF 1 < 0 .
    对于任意一个圆,任意一个k的值,我们可以在任意一条直径所在直线上,在同侧适当的位置选取A、B点,则需 SKIPIF 1 < 0
    【技巧总结】计算 SKIPIF 1 < 0 的最小值时,利用两边成比例且夹角相等构造母子型相似三角形
    问题:在圆上找一点P使得 SKIPIF 1 < 0 的值最小,解决步骤具体如下:
    ①如图,将系数不为1的线段两端点与圆心相连即OP,OB
    ②计算出这两条线段的长度比 SKIPIF 1 < 0
    ③在OB上取一点C,使得 SKIPIF 1 < 0 ,即构造△POM∽△BOP,则 SKIPIF 1 < 0 , SKIPIF 1 < 0
    ④则 SKIPIF 1 < 0 ,当A、P、C三点共线时可得最小值
    例题精讲
    【例1】.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,则AP+BP的最小值为________.
    变式训练
    【变式1-1】.如图,正方形ABCD的边长为4,⊙B的半径为2,P为⊙B上的动点,则PD+PC的最小值等于 .
    【变式1-2】.如图,在△ABC中,∠A=90°,AB=AC=4,点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,则的最小值为 .
    【变式1-3】.如图,在直角坐标系中,以原点O为圆心作半径为4的圆交x轴正半轴于点A,点M的坐标为(6,3),点N的坐标为(8,0),点P在圆上运动.则PM+PN的最小值是 .
    【例2】.如图,在⊙O中,点A、点B在⊙O上,∠AOB=90°,OA=6,点C在OA上,且OC=2AC,点D是OB的中点,点M是劣弧AB上的动点,则CM+2DM的最小值为 .
    变式训练
    【变式2-1】.⊙O半径为2,AB,DE为两条直线.作DC⊥AB于C,且C为AO中点,P为圆上一个动点.求2PC+PE的最小值.
    【变式2-2】.如图,在扇形OCD中,∠COD=90°,OC=3,点A在OD上,AD=1,点B为OC的中点,点E是弧CD上的动点,则AE+2EB的最小值是 .
    【变式2-3】.如图,等边△ABC的边长6,内切圆记为⊙O,P是⊙O上一动点,则2PB+PC的最小值为 .

    1.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则PA+PB的最小值为 .
    2.如图,扇形AOB中,∠AOB=90°,OA=6,C是OA的中点,D是OB上一点,OD=5,P是上一动点,则PC+PD的最小值为 .
    3.如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为弧AB上一动点,则PC+PD的最小值为 .

    4.在Rt△AOB中,∠AOB=90°,OA=8,OB=10,以O为圆心,4为半径作圆O,交两边于点C,D,P为劣弧CD上一动点,则PA+PB最小值为 .
    5.如图,在边长为6的正方形ABCD中,M为AB上一点,且BM=2,N为边BC上一动点,连接MN,点B关于MN对称,对应点为P,连接PA,PC,则PA+2PC的最小值为 .
    6.如图,矩形ABCD中,AB=2,AD=4,M点是BC的中点,A为圆心,AB为半径的圆交AD于点E.点P在上运动,则PM+DP的最小值为 .
    7.如图,在△ABC中,∠A=90°,AB=3,AC=4,D为AC的中点,以A为圆心,AD为半径作OA交AB于点E,P为劣弧DE上一动点,连接PB、PC,则PC+PB的最小值为 .
    8.如图,在平面直角坐标系中,A(2,0)、B(0,2)、C(4,0)、D(3,2),P是△AOB外部的第一象限内一动点,且∠BPA=135°,则2PD+PC的最小值是 .
    9.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,⊙O的半径为1,M为⊙O上一动点,求AM+BM的最小值.
    10.问题提出:如图1,在等边△ABC中,AB=12,⊙C半径为6,P为圆上一动点,连接AP,BP,求AP+BP的最小值.
    (1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=3,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP,
    ∴=,∴PD=BP,∴AP+BP=AP+PD.
    请你完成余下的思考,并直接写出答案:AP+BP的最小值为 .
    (2)自主探索:如图3,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,AP+PC的最小值为 .
    (3)拓展延伸:如图4,扇形COD中,O为圆心,∠COD=120°,OC=4,OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程.
    11.(1)如图1,已知正方形ABCD的边长为6,圆B的半径为3,点P是圆B上的一个动点,则PD+PC的最小值为 ,PD﹣PC的最大值为 .
    (2)如图2,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,求PD+PC的最小值,以及PD﹣PC的最大值.
    12.阅读以下材料,并按要求完成相应的任务.
    已知平面上两点A、B,则所有符合=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.
    阿氏圆基本解法:构造三角形相似.
    【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设=k,求PC+kPD的最小值.
    阿氏圆的关键解题步骤:
    第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;
    第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.
    下面是该题的解答过程(部分):
    解:在OD上取点M,使得OM:OP=OP:OD=k,
    又∵∠POD=∠MOP,∴△POM∽△DOP.
    任务:
    (1)将以上解答过程补充完整.
    (2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD=2,利用(1)中的结论,请直接写出AD+BD的最小值.
    13.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+的最小值和PD﹣的最大值;
    (2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为 ,PD﹣的最大值为 .
    (3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为 ,PD﹣的最大值为 .
    14.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.
    (1)求抛物线y=﹣x2+bx+c的表达式;
    (2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;
    (3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;
    ②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.
    15.如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0).
    (1)求二次函数的表达式;
    (2)求顶点A的坐标及直线AB的表达式;
    (3)判断△ABO的形状,试说明理由;
    (4)若点P为⊙O上的动点,且⊙O的半径为2,一动点E从点A出发,以每秒2个单位长度的速度沿线段AP匀速运动到点P,再以每秒1个单位长度的速度沿线段PB匀速运动到点B后停止运动,求点E的运动时间t的最小值.

    相关试卷

    中考数学常见几何模型全归纳提分精练专题11最值模型-阿氏圆问题(原卷版+解析):

    这是一份中考数学常见几何模型全归纳提分精练专题11最值模型-阿氏圆问题(原卷版+解析),共48页。

    2024年中考数学二轮复习 最值模型之胡不归与阿氏圆模型(原卷版+解析版):

    这是一份2024年中考数学二轮复习 最值模型之胡不归与阿氏圆模型(原卷版+解析版),共29页。

    模型17 阿氏圆最值问题(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用):

    这是一份模型17 阿氏圆最值问题(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型17阿氏圆最值问题原卷版docx、模型17阿氏圆最值问题解析版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        中考数学二轮重难点复习讲义模型17 阿氏圆最值问题(2份打包,原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map