|试卷下载
搜索
    上传资料 赚现金
    专题65 胡不归中的双线段模型与最值问题-中考数学重难点专项突破(全国通用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题65 胡不归中的双线段模型与最值问题(原卷版).docx
    • 解析
      专题65 胡不归中的双线段模型与最值问题(解析版).docx
    专题65 胡不归中的双线段模型与最值问题-中考数学重难点专项突破(全国通用)01
    专题65 胡不归中的双线段模型与最值问题-中考数学重难点专项突破(全国通用)02
    专题65 胡不归中的双线段模型与最值问题-中考数学重难点专项突破(全国通用)01
    专题65 胡不归中的双线段模型与最值问题-中考数学重难点专项突破(全国通用)02
    专题65 胡不归中的双线段模型与最值问题-中考数学重难点专项突破(全国通用)03
    还剩3页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题65 胡不归中的双线段模型与最值问题-中考数学重难点专项突破(全国通用)

    展开
    这是一份专题65 胡不归中的双线段模型与最值问题-中考数学重难点专项突破(全国通用),文件包含专题65胡不归中的双线段模型与最值问题原卷版docx、专题65胡不归中的双线段模型与最值问题解析版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

    【模型展示】
    如图,一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V1,记,
    即求BC+kAC的最小值.
    构造射线AD使得sin∠DAN=k,CH/AC=k,CH=kAC.
    将问题转化为求BC+CH最小值,过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小.
    在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.
    【精典例题】
    1、在平面直角坐标系中,将二次函数的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与轴交于点、(点在点的左侧),,经过点的一次函数的图象与轴正半轴交于点,且与抛物线的另一个交点为,的面积为5.
    (1)求抛物线和一次函数的解析式;
    (2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出此时点E的坐标;
    (3)若点为轴上任意一点,在(2)的结论下,求的最小值.
    【答案】(1);;(2)的面积最大值是,此时点坐标为;(3)的最小值是3.
    【详解】
    解:(1)将二次函数的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为,
    ∵,∴点的坐标为,
    代入抛物线的解析式得,,∴,
    ∴抛物线的解析式为,即.
    令,解得,,∴,
    ∴,
    ∵的面积为5,∴,∴,
    代入抛物线解析式得,,解得,,∴,
    设直线的解析式为,
    ∴,解得:,
    ∴直线的解析式为.
    (2)过点作轴交于,如图,设,则,
    ∴,
    ∴,,
    ∴当时,的面积有最大值,最大值是,此时点坐标为.
    (3)作关于轴的对称点,连接交轴于点,过点作于点,交轴于点,
    ∵,,
    ∴,,∴,
    ∵,
    ∴,∴,
    ∵、关于轴对称,∴,
    ∴,此时最小,
    ∵,,
    ∴,
    ∴.
    ∴的最小值是3.
    2、如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是( )
    【答案】B
    【详解】
    如图,作DH⊥AB于H,CM⊥AB于M.
    ∵BE⊥AC,
    ∴∠AEB=90°,
    ∵tanA==2,设AE=a,BE=2a,
    则有:100=a2+4a2,
    ∴a2=20,
    ∴a=2或-2(舍弃),
    ∴BE=2a=4,
    ∵AB=AC,BE⊥AC,CM⊥AB,
    ∴CM=BE=4(等腰三角形两腰上的高相等))
    ∵∠DBH=∠ABE,∠BHD=∠BEA,
    ∴,
    ∴DH=BD,
    ∴CD+BD=CD+DH,
    ∴CD+DH≥CM,
    ∴CD+BD≥4,
    ∴CD+BD的最小值为4.
    故选B.
    3、已知抛物线过点,两点,与y轴交于点C,.
    (1)求抛物线的解析式及顶点D的坐标;
    (2)过点A作,垂足为M,求证:四边形ADBM为正方形;
    (3)点P为抛物线在直线BC下方图形上的一动点,当面积最大时,求点P的坐标;
    (4)若点Q为线段OC上的一动点,问:是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.
    【答案】(1)抛物线的表达式为:,顶点;(2)证明见解析;(3)点;(4)存在,的最小值为.
    【详解】
    (1)函数的表达式为:,
    即:,解得:,
    故抛物线的表达式为:,
    则顶点;
    (2),,
    ∵A(1,0),B(3,0),∴ OB=3,OA=1,
    ∴AB=2,
    ∴,
    又∵D(2,-1),
    ∴AD=BD=,
    ∴AM=MB=AD=BD,
    ∴四边形ADBM为菱形,
    又∵,
    菱形ADBM为正方形;
    (3)设直线BC的解析式为y=mx+n,
    将点B、C的坐标代入得:,
    解得:,
    所以直线BC的表达式为:y=-x+3,
    过点P作y轴的平行线交BC于点N,
    设点,则点N,
    则,
    ,故有最大值,此时,
    故点;
    (4)存在,理由:
    如图,过点C作与y轴夹角为的直线CF交x轴于点F,过点A作,垂足为H,交y轴于点Q,
    此时,
    则最小值,
    在Rt△COF中,∠COF=90°,∠FOC=30°,OC=3,tan∠FCO=,
    ∴OF=,
    ∴F(-,0),
    利用待定系数法可求得直线HC的表达式为:…①,
    ∵∠COF=90°,∠FOC=30°,
    ∴∠CFO=90°-30°=60°,
    ∵∠AHF=90°,
    ∴∠FAH=90°-60°=30°,
    ∴OQ=AO•tan∠FAQ=,
    ∴Q(0,),
    利用待定系数法可求得直线AH的表达式为:…②,
    联立①②并解得:,
    故点,而点,
    则,
    即的最小值为.
    4、已知抛物线(为常数,)经过点,点是轴正半轴上的动点.
    (Ⅰ)当时,求抛物线的顶点坐标;
    (Ⅱ)点在抛物线上,当,时,求的值;
    (Ⅲ)点在抛物线上,当的最小值为时,求的值.
    【答案】(Ⅰ);(Ⅱ);(Ⅲ).
    【详解】
    解:(Ⅰ)∵抛物线经过点,
    ∴.即.
    当时,,
    ∴抛物线的顶点坐标为.
    (Ⅱ)由(Ⅰ)知,抛物线的解析式为.
    ∵点在抛物线上,
    ∴.
    由,得,,
    ∴点在第四象限,且在抛物线对称轴的右侧.
    如图,过点作轴,垂足为,则点.
    ∴,.得.
    ∴在中,.
    ∴.
    由已知,,
    ∴.
    ∴.
    (Ⅲ)∵点在抛物线上,
    ∴.
    可知点在第四象限,且在直线的右侧.
    考虑到,可取点,
    如图,过点作直线的垂线,垂足为,与轴相交于点,
    有,得,
    则此时点满足题意.
    过点作轴于点,则点.
    在中,可知.
    ∴,.
    ∵点,
    ∴.解得.
    ∵,
    ∴.
    ∴.
    5、如图,在平面在角坐标系中,抛物线y=x2-2x-3与x轴交与点A,B(点A在点B的左侧)交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.
    (1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+PC的最小值;
    (2)在(1)中,当MN取得最大值HF+FP+1/3PC取得小值时,把点P向上平移个单位得到点Q,连结AQ,把△AOQ绕点O瓶时针旋转一定的角度(0°<<360°),得到△AOQ,其中边AQ交坐标轴于点C在旋转过程中,是否存在一点G使得?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.
    【答案】(1);(2)存在,Q的坐标(,﹣),(,),(﹣,),(,﹣)
    【详解】
    解:(1)如图1
    ∵抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),交y轴于点C
    ∴令y=0解得:x1=﹣1,x2=3,令x=0,解得:y=﹣3,
    ∴A(﹣1,0),B(3,0),C(0,﹣3)
    ∵点D为抛物线的顶点,且﹣4
    ∴点D的坐标为D(1,﹣4)
    ∴直线BD的解析式为:y=2x﹣6,
    由题意,可设点N(m,m2﹣2m﹣3),则点F(m,2m﹣6)
    ∴|NF|=(2m﹣6)﹣(m2﹣2m﹣3)=﹣m2+4m﹣3
    ∴当m==2时,NF 取到最大值,此时MN取到最大值,此时HF=2,
    此时,N(2,﹣3),F(2,﹣2),H(2,0)
    在x轴上找一点K(,0),连接CK,过点F作CK的垂线交CK于点J点,交y轴于点P,
    ∴sin∠OCK= ,直线KC的解析式为:,且点F(2,﹣2),
    ∴PJ=PC,直线FJ的解析式为:
    ∴点J( , )
    ∴FP+PC的最小值即为FJ的长,且
    ∴;
    (2)由(1)知,点P(0, ),
    ∵把点P向上平移 个单位得到点Q
    ∴点Q(0,﹣2)
    ∴在Rt△AOQ中,∠AOG=90°,AQ=,取AQ的中点G,连接OG,则OG=GQ=AQ=,此时,∠AQO=∠GOQ
    把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G
    ①如图2
    G点落在y轴的负半轴,则G(0,﹣),过点Q'作Q'I⊥x轴交x轴于点I,且∠GOQ'=∠Q'
    则∠IOQ'=∠OA'Q'=∠OAQ,
    ∵sin∠OAQ===
    ∴,解得:|IO|=
    ∴在Rt△OIQ'中根据勾股定理可得|OI|=
    ∴点Q'的坐标为Q'(,﹣);
    ②如图3,
    当G点落在x轴的正半轴上时,同理可得Q'(,)
    ③如图4
    当G点落在y轴的正半轴上时,同理可得Q'(﹣,)
    ④如图5
    当G点落在x轴的负半轴上时,同理可得Q'(﹣,﹣)
    综上所述,所有满足条件的点Q′的坐标为:(,﹣),(,),(﹣,),(,﹣)
    胡不归模型问题解题步骤如下;
    1、将所求线段和改写为“PA+PB”的形式(<1),若>1,提取系数,转化为小于1的形式解决。
    2、在PB的一侧,PA的异侧,构造一个角度α,使得sinα=
    3、最后利用两点之间线段最短及垂线段最短解题
    相关试卷

    专题68 费马点中的对称模型与最值问题-中考数学重难点专项突破(全国通用): 这是一份专题68 费马点中的对称模型与最值问题-中考数学重难点专项突破(全国通用),文件包含专题68费马点中的对称模型与最值问题原卷版docx、专题68费马点中的对称模型与最值问题解析版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。

    专题64 将军饮马模型与最值问题-中考数学重难点专项突破(全国通用): 这是一份专题64 将军饮马模型与最值问题-中考数学重难点专项突破(全国通用),文件包含专题64将军饮马模型与最值问题原卷版docx、专题64将军饮马模型与最值问题解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    最新中考数学难点突破与经典模型精讲练 专题18 最值问题中的胡不归模型 (全国通用): 这是一份最新中考数学难点突破与经典模型精讲练 专题18 最值问题中的胡不归模型 (全国通用),文件包含专题18最值问题中的胡不归模型原卷版docx、专题18最值问题中的胡不归模型解析版docx等2份试卷配套教学资源,其中试卷共64页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题65 胡不归中的双线段模型与最值问题-中考数学重难点专项突破(全国通用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map