数学浙教版5.1 矩形课时作业
展开TOC \ "1-3" \h \u
\l "_Tc19454" 【题型1 由矩形的性质求线段的长度】 PAGEREF _Tc19454 \h 1
\l "_Tc5294" 【题型2 由矩形的性质求角的度数】 PAGEREF _Tc5294 \h 2
\l "_Tc12459" 【题型3 由矩形的性质求面积】 PAGEREF _Tc12459 \h 3
\l "_Tc32315" 【题型4 矩形的性质与坐标轴的综合运用】 PAGEREF _Tc32315 \h 4
\l "_Tc26081" 【题型5 矩形判定的条件】 PAGEREF _Tc26081 \h 6
\l "_Tc24347" 【题型6 证明四边形是矩形】 PAGEREF _Tc24347 \h 7
\l "_Tc16216" 【题型7 矩形中多结论问题】 PAGEREF _Tc16216 \h 10
\l "_Tc26003" 【题型8 矩形的判定与性质综合】 PAGEREF _Tc26003 \h 12
【知识点1 矩形的定义】
有一个角是直角的平行四边形是矩形.
【知识点2 矩形的性质】
①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.
【题型1 由矩形的性质求线段的长度】
【例1】(2022春•新泰市期末)如图,在矩形ABCD中,,对角线AC与BD相交于点O,DE⊥AC,垂足为点E,CE=OE,则DE的长为( )
A.4B.C.D.2
【变式1-1】(2022春•开州区期末)如图,在矩形ABCD中,对角线AC、BD相交于点O,DF垂直平分OC,交AC于点E,交BC于点F,连接AF,若BD=2,DF=2,则AF的长为( )
A.B.2C.D.3
【变式1-2】(2022•碑林区校级模拟)如图,在矩形ABCD中,O是BD的中点,E为AD边上一点,且有AE=OB=2.连接OE,若∠AEO=75°,则DE的长为( )
A.B.C.2D.22
【变式1-3】(2022•南岗区期末)如图,矩形ABCD中,点E,F分别在AD,CD上,且CF=2DF=2,连接BE,EF,BF,且BF平分∠EBC,∠EFB=45°,连接CE交BF于点G,则线段EG的长为 .
【题型2 由矩形的性质求角的度数】
【例2】(2022春•溧水区期中)如图,在矩形ABCD中,AC、BD交于点O,DE⊥AC于点E,∠AOD=110°,则∠CDE大小是( )
A.55°B.40°C.35°D.20°
【变式2-1】(2022•武昌区期末)如图,把一张矩形纸片沿对角线折叠,如果量得∠EDF=22°,则∠FDB的大小是( )
A.22°B.34°C.24°D.68°
【变式2-2】(2022春•江夏区期中)如图,矩形ABCD中,AB=2,AD=1,点M在边DC上,若AM平分∠DMB,则∠AMD的大小是( )
A.45°B.60°C.75°D.30°
【变式2-3】(2022春•莫旗期末)如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则平行四边形ABCD的最大内角的大小是 .
【题型3 由矩形的性质求面积】
【例3】(2022春•浦东新区期末)我们把两条对角线所成两个角的大小之比是1:2的矩形叫做“和谐矩形”,如果一个“和谐矩形”的对角线长为10cm,则矩形的面积为 cm2.
【变式3-1】(2022•成都)如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1 S2;(填“>”或“<”或“=”)
【变式3-2】(2022春•成都期末)如图,点E是矩形ABCD边AD上一动点,连接BE,以BE边作矩形BEFG,使得FG始终经过点C.若矩形ABCD的面积为s1,矩形BEFG的面积为s2,则s1与s2的大小关系是( )
A.s1<s2B.s1=s2C.s1>s2D.不确定
【变式3-3】(2022春•九龙坡区校级期中)已知:矩形ABCD中,延长BC至E,使BE=BD,F为DE的中点,连接AF、CF.
(1)求证:CF⊥AF;
(2)若AB=10cm,BC=16cm,求△ADF的面积.
【题型4 矩形的性质与坐标轴的综合运用】
【例4】(2022春•潮南区期中)如图,在矩形COED中,点D的坐标是(1,3),则CE的长是( )
A.3B.C.D.
【变式4-1】(2022春•任城区期末)定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.如图,在平面直角坐标系xOy中,矩形OABC的边OA=3,OC=4,点M(2,0),在边AB存在点P,使得△CMP为“智慧三角形”,则点P的坐标为( )
A.(3,1)或(3,3)B.(3,)或(3,3)
C.(3,)或(3,1)D.(3,)或(3,1)或(3,3)
【变式4-2】(2022•西平县模拟)已知在矩形ABCD中,AB=4,BC,O为BC上一点,BO,如图所示,以BC所在直线为x轴,O为坐标原点建立平面直角坐标系,M为线段OC上的一点.
(1)若点M的坐标为(1,0),如图1,以OM为一边作等腰△OMP,使点P在矩形ABCD的一边上,则符合条件的等腰三角形有几个?请直接写出所有符合条件的点P的坐标;
(2)若将(1)中的点M的坐标改为(4,0),其他条件不变,如图2,那么符合条件的等腰三角形有几个?求出所有符合条件的点P的坐标.
【变式4-3】(2022春•浦江县期中)如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O→C→B→A→O的路线移动(移动一周).
(1)写出点B的坐标;
(2)当点P移动了4秒时,求出点P的坐标;
(3)在移动过程中,当△OBP的面积是10时,直接写出点P的坐标.
【知识点3 矩形的判定方法】
①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;
③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”).
【题型5 矩形判定的条件】
【例5】(2022春•夏邑县期中)如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )
A.AB=BEB.BE⊥DCC.∠ADB=90°D.CE⊥DE
【变式5-1】(2022春•江油市期末)在四边形ABCD中,AC、BD交于点O,在下列条件中,不能判定四边形ABCD为矩形的是( )
A.AO=CO,BO=DO,∠BAD=90°
B.AB=CD,AD=BC,AC=BD
C.∠BAD=∠BCD,∠ABC+∠BCD=180°,AC⊥BD
D.∠BAD=∠ABC=90°,AC=BD
【变式5-2】(2022春•仙居县期末)如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )
A.AB=BEB.CE⊥DEC.∠ADB=90°D.BE⊥DC
【变式5-3】(2022•西城区一模)如图,在△ABC中,D,E分别是AB,AC的中点,点F,G在边BC上,且DG=EF.只需添加一个条件即可证明四边形DFGE是矩形,这个条件可以是 .(写出一个即可)
【题型6 证明四边形是矩形】
【例6】(2022春•南谯区期末)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,若E,F是线段AC上两动点,同时分别从A,C两点出发以1cm/s的速度向点C,A运动.
(1)求证:△ADE≌△CBF;
(2)若BD=8cm,AC=14cm,当运动时间t为多少秒时,四边形DEBF是矩形?
【变式6-1】(2022春•海陵区期末)如图,在△ABC中,O是边AC上的一个动点,过点O作直线MN,交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F.给出下列信息:①MN∥BC;②OE=OC;③OF=OC.
(1)请在上述3条信息中选择其中一条作为条件,证明:OE=OF;
(2)在(1)的条件下,连接AE、AF,当点O在边AC上运动到什么位置时,四边形AECF是矩形?请说明理由.
【变式6-2】(2022春•津南区期末)已知▱ABCD,对角线AC,BD相交于点O(AC>BD),点E,F分别是OA,OC上的动点.
(Ⅰ)如图①,若AE=CF,求证:四边形EBFD是平行四边形;
(Ⅱ)如图②,若OE=OB,OF=OD,求证:四边形EBFD是矩形.
【变式6-3】(2022春•洪泽区期末)在矩形ABCD中,AB=6,BC=8,E、F是对角线AC上的两个动点,分别从A、C同时出发相向而行,速度均为每秒1个单位长度,运动时间为t秒,其中0≤t≤10.
(1)若G、H分别是AD、BC的中点,则下列关于四边形EGFH(E、F相遇时除外)的判断:①一定是平行四边形;②一定是矩形;③一定是菱形,正确的是 ;(直接填序号,不用说理)
(2)在(1)的条件下,若四边形EGFH为矩形,求t的值.
【题型7 矩形中多结论问题】
【例7】(2022•绥化一模)如图,在一张矩形纸片ABCD中AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的点H处,点D落在点G处,连接CE,CH.有以下四个结论:①四边形CFHE是菱形;②CE平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=5.以上结论中,其中正确结论的个数有( )
A.1个B.2个C.3个D.4个
【变式7-1】(2022春•南充期末)如图,矩形ABCD中,M,N分别是边AB,CD的中点,BP⊥AN于P,CP的延长线交AD于Q.下列结论:①PM=CN;②PM⊥CQ;③PQ=AQ;④DQ<2PN.其中结论正确的有( )
A.1 个B.2 个C.3 个D.4 个
【变式7-2】(2022春•泉州期末)如图,点P是矩形ABCD内一点,连结PA、PB、PC、PD,设△PAB、△PBC、△PCD、△PDA的面积分别为S1、S2、S3、S4,以下四个判断:
①当∠PAB=∠PDA时,B、P、D三点共线
②存在唯一一点P,使PA=PB=PC=PD
③不存在到矩形ABCD四条边距离都相等的点P
④若S1=S2,则S3=S4
其中正确的是 .(写出所有正确结论的序号)
【变式7-3】(2022春•兴文县期中)如图,矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE∥BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:①DN=BM;②EM∥FN;③DF=NF;④当AO=AD时,四边形DEBF是菱形.其中正确的结论是 .
【题型8 矩形的判定与性质综合】
【例8】(2022春•海淀区期末)如图,在△ABC中,D是AB上一点,AD=DC,DE平分∠ADC交AC于点E,DF平分∠BDC交BC于点F,∠DFC=90°.
(1)求证:四边形CEDF是矩形;
(2)若∠B=30°,AD=2,连接BE,求BE的长.
【变式8-1】(2022•息烽县二模)如图,菱形ABCD的对角线AC、BD交于点O,过点B作BE∥AC,且,连接EC、ED.
(1)求证:四边形BECO是矩形;
(2)若AC=2,∠ABC=60°,求DE的长.
【变式8-2】(2022•开福区校级二模)如图,平行四边形ABCD的对角线AC、BD相交于点O,过点A作AF⊥CD,垂足为F,延长DC到点E,使CE=DF,连接BE.
(1)求证:四边形ABEF是矩形;
(2)若AB=5,CF=2,AC⊥BD,连接OE,求OE的长.
【变式8-3】(2022•崇左)如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.
(1)求证:四边形EFGH是矩形;
(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.
初中数学浙教版八年级下册5.2 菱形达标测试: 这是一份初中数学浙教版八年级下册<a href="/sx/tb_c12221_t7/?tag_id=28" target="_blank">5.2 菱形达标测试</a>,文件包含浙教版八年级下册数学举一反三系列专题52菱形的性质与判定八大题型教师版docx、浙教版八年级下册数学举一反三系列专题52菱形的性质与判定八大题型学生版docx等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
数学八年级下册第四章 平行四边形4.2 平行四边形综合训练题: 这是一份数学八年级下册<a href="/sx/tb_c12217_t7/?tag_id=28" target="_blank">第四章 平行四边形4.2 平行四边形综合训练题</a>,文件包含浙教版八年级下册数学举一反三系列专题42平行四边形的性质八大题型教师版docx、浙教版八年级下册数学举一反三系列专题42平行四边形的性质八大题型学生版docx等2份试卷配套教学资源,其中试卷共69页, 欢迎下载使用。
初中数学浙教版八年级下册2.1 一元二次方程随堂练习题: 这是一份初中数学浙教版八年级下册<a href="/sx/tb_c12204_t7/?tag_id=28" target="_blank">2.1 一元二次方程随堂练习题</a>,文件包含浙教版八年级下册数学举一反三系列专题21一元二次方程的定义及解八大题型教师版docx、浙教版八年级下册数学举一反三系列专题21一元二次方程的定义及解八大题型学生版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。