杭州市建兰中学2023-2024学年九年级数学第一学期期末教学质量检测试题含答案
展开
这是一份杭州市建兰中学2023-2024学年九年级数学第一学期期末教学质量检测试题含答案,共7页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.已知⊙O半径为3,M为直线AB上一点,若MO=3,则直线AB与⊙O的位置关系为( )
A.相切B.相交C.相切或相离D.相切或相交
2.若点A(-3,m),B(3,m),C(-1,m+n²+1)在同一个函数图象上,这个函数可能是( )
A.y=x+2B.C.y=x²+2D.y=-x²-2
3.正五边形的每个外角度数为( )
A.B.C.D.
4.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为( )
A.8B.6C.12D.10
5.将抛物线y=2x2经过怎样的平移可得到抛物线y=2(x+3)2+4( )
A.先向左平移3个单位,再向上平移4个单位B.先向左平移3个单位,再向下平移4个单位
C.先向右平移3个单位,再向上平移4个单位D.先向右平移3个单位,再向下平移4个单位
6.如图,△ABC中,AB=25,BC=7,CA=1.则sinA的值为( )
A.B.C.D.
7.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是( )
A.种植10棵幼树,结果一定是“有9棵幼树成活”
B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”
C.种植10n棵幼树,恰好有“n棵幼树不成活”
D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.9
8.下列说法正确的是 ( )
A.“经过有交通信号的路口遇到红灯”是必然事件
B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次
C.投掷一枚硬币正面朝上是随机事件
D.明天太阳从东方升起是随机事件
9.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=( )
A.141°B.144°C.147°D.150°
10.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是( )
A.B.C.D.
11.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在( )
A.第一象限B.第二象限C.第三象限D.第四象限
12.如图,一块直角三角板的30°角的顶点P落在⊙O上,两边分别交⊙O于A、B两点,若⊙O的直径为8,则弦AB长为( )
A.B.C.4D.6
二、填空题(每题4分,共24分)
13.若关于x的一元二次方程x2﹣4x+m=0没有实数根,则m的取值范围是_____.
14.关于的一元二次方程有实数根,则满足___________.
15.若正六边形外接圆的半径为4,则它的边长为_____.
16.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是______.
17.若一元二次方程有两个不相等的实数根,则k的取值范围是 .
18.将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线解析式为______.
三、解答题(共78分)
19.(8分)如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.
20.(8分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.
(1)画出△A1OB1;
(2)在旋转过程中点B所经过的路径长为______;
(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.
21.(8分)如图,在某一路段,规定汽车限速行驶,交通警察在此限速路段的道路上设置了监测区,其中点C、D为监测点,已知点C、D、B在同一直线上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°
(1)求道路AB段的长(结果精确到1米)
(2)如果道路AB的限速为60千米/时,一辆汽车通过AB段的时间为90秒,请你判断该车是否是超速,并说明理由;参考数据:sin35°≈0.5736,cs35°≈0.8192,tan35°≈0.7002
22.(10分)如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.
23.(10分)计算:
(1)sin260°﹣tan30°•cs30°+tan45°
(2)cs245°+sin245°+sin254°+cs254°
24.(10分)如图,在四边形中,,,对角线,交于点,平分,过点作交的延长线于点,连接.
(1)求证:四边形是菱形;
(2)若,,求的长.
25.(12分)为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:
收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88
(1)根据上述数据,将下列表格补充完整.
整理、描述数据:
数据分析:样本数据的平均数、众数和中位数如下表:
得出结论:
(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为 分.
数据应用:
(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.
26.(12分)如图,在中,,是边上的中线,平分交于点、交于点,,.
(1)求的长;
(2)证明:;
(3)求的值.
参考答案
一、选择题(每题4分,共48分)
1、D
2、D
3、B
4、C
5、A
6、A
7、D
8、C
9、B
10、D
11、D
12、C
二、填空题(每题4分,共24分)
13、m>4
14、且
15、1
16、1
17、:k<1.
18、
三、解答题(共78分)
19、证明见解析.
20、(1)画图见解析;(2);(3).
21、(1)1395米;(2)超速,理由见解析;
22、证明见解析.
23、(1);(2)2.
24、(1)证明见解析;(2)2.
25、(1)5;3;90;(2)91;(3)估计评选该荣誉称号的最低分数为97分.理由见解析.
26、(1)13 (2)证明见解析 (3)
成绩/分
88
89
90
91
95
96
97
98
99
学生人数
2
1
3
2
1
2
1
平均数
众数
中位数
93
91
相关试卷
这是一份浙江省杭州市上城区建兰中学2023-2024学年数学九上期末质量检测试题含答案,共8页。试卷主要包含了若,则,的值为等内容,欢迎下载使用。
这是一份杭州市建兰中学2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了下列事件中,是随机事件的是等内容,欢迎下载使用。
这是一份杭州市建兰中学2023-2024学年数学八上期末调研试题含答案,共9页。试卷主要包含了答题时请按要求用笔,下列运算中,正确的是,下列式子是分式的是等内容,欢迎下载使用。