2023-2024学年浙江省杭州市桐庐县数学九年级第一学期期末教学质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x名学生,则根据题意列出的方程是( )
A.x(x+1)=182 B.0.5x(x+1)=182
C.0.5x(x-1)=182 D.x(x-1)=182
2.如图,在中,, 将绕点逆时针旋转得到,其中点与 点是对应点,且点在同一条直线上;则的长为( )
A.B.C.D.
3.如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是( )
A.AE=OEB.CE=DEC.OE=CED.∠AOC=60°
4.正方形具有而菱形不具有的性质是( )
A.对角线互相平分B.对角线相等
C.对角线平分一组对角D.对角线互相垂直
5.计算 的结果是( )
A.B.C.D.9
6.如图,的半径为,圆心到弦的距离为,则的长为( )
A.B.C.D.
7.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是( )
A.m<1B.m>﹣1C.m>1D.m<﹣1
8.如图,AB是⊙O的弦,∠BAC=30°,BC=2,则⊙O的直径等于( )
A.2B.3C.4D.6
9.反比例函数y=﹣的图象在( )
A.第二、四象限B.第一、三象限C.第一、二象限D.第三、四象限
10.已知二次函数的图象经过点,当自变量的值为时,函数的值为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,量角器的0度刻度线为,将一矩形直角与量角器部分重叠,使直尺一边与量角器相切于点,直尺另一边交量角器于点,量得,点在量角器上的度数为60°,则该直尺的宽度为_________________.
12.如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为_____.
13.直线y=2被抛物线y=x2﹣3x+2截得的线段长为_____.
14.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于__________________.
15.在本赛季比赛中,某运动员最后六场的得分情况如下:则这组数据的极差为_______.
16.已知和时,多项式的值相等,则m的值等于 ______ .
17.如果一元二次方程有两个相等的实数根,那么是实数的取值为________.
18.如图,两个同心圆,大圆半径,,则图中阴影部分的面积是__________.
三、解答题(共66分)
19.(10分)计算:
20.(6分)(问题呈现)阿基米德折弦定理:
如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.
证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.
∵M是的中点,
∴MA=MC①
又∵∠A=∠C②
∴△MAB≌△MCG③
∴MB=MG
又∵MD⊥BC
∴BD=DG
∴AB+BD=CG+DG
即CD=DB+BA
根据证明过程,分别写出下列步骤的理由:
① ,
② ,
③ ;
(理解运用)如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是的中点,MD⊥BC于点D,则BD= ;
(变式探究)如图3,若点M是的中点,(问题呈现)中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.
(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:
如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,求AD长.
21.(6分)如图,灯塔在港口的北偏东方向上,且与港口的距离为80海里,一艘船上午9时从港口出发向正东方向航行,上午11时到达处,看到灯塔在它的正北方向.试求这艘船航行的速度.(结果保留根号)
22.(8分)某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.
(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;
(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.
23.(8分)现有3个型号相同的杯子,其中A等品2个,B等品1个,从中任意取1个杯子,记下等级后放回,第二次再从中取1个杯子,
(1)用恰当的方法列举出两次取出杯子所有可能的结果;
(2)求两次取出至少有一次是B等品杯子的概率.
24.(8分)某公司研制出新产品,该产品的成本为每件2400元.在试销期间,购买不超过10件时,每件销售价为3000元;购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为2600元。请解决下列问题:
(1)直接写出:购买这种产品 ________件时,销售单价恰好为2600元;
(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y元,求y与x之间的函数表达式;
(3)该公司的销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使购买数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)
25.(10分)如图,在平行四边形ABCD中,E为AD边上一点,BE平分∠ABC,连接CE,已知DE=6,CE=8,AE=1.
(1)求AB的长;
(2)求平行四边形ABCD的面积;
(3)求cs∠AEB.
26.(10分)在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为、、、四个等级,其中相应等级的得分依次为分,分,分,分.马老师将九年级一班和二班的成绩整理并绘制成如下的统计图:
请你根据以上提供的信息解答下列问题:
(1)此次竞赛中二班成绩在分及其以上的人数是_______人;
(2)补全下表中、、的值:
(3)学校准备在这两个班中选一个班参加市级科学素养竞赛,你建议学校选哪个班参加?说说你的理由.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、A
3、B
4、B
5、D
6、D
7、C
8、C
9、A
10、B
二、填空题(每小题3分,共24分)
11、
12、
13、1
14、
15、1
16、或1
17、
18、
三、解答题(共66分)
19、(1);(2).
20、(问题呈现)相等的弧所对的弦相等;同弧所对的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)1;(变式探究)DB=CD+BA;证明见解析;(实践应用)1或.
21、海里/时
22、(1)列表见解析;(2).
23、(1)见解析;(2).
24、(1)90;(2);(3)公司应将最低销售单价调整为2725元.
25、(1)1;(2)128;(3).
26、(1);(2);;;(3)见解析.
平均数(分)
中位数(分)
众数(分)
方差
一班
二班
浙江省杭州市富阳区2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案: 这是一份浙江省杭州市富阳区2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,若反比例函数y=的图象经过点等内容,欢迎下载使用。
浙江省杭州市下沙区2023-2024学年九年级数学第一学期期末检测模拟试题含答案: 这是一份浙江省杭州市下沙区2023-2024学年九年级数学第一学期期末检测模拟试题含答案,共8页。试卷主要包含了如图中几何体的主视图是等内容,欢迎下载使用。
2023-2024学年浙江省杭州市下城区九年级数学第一学期期末教学质量检测模拟试题含答案: 这是一份2023-2024学年浙江省杭州市下城区九年级数学第一学期期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。