山西省兴县2023-2024学年数学九上期末考试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.一元二次方程的根是( )
A.B.C.D.
2.如图,若AB是⊙0的直径,CD是⊙O的弦,∠ABD=56°, 则∠BCD是( )
A.34°B.44°C.54°D.56°
3.如果点A(﹣5,y1),B(﹣,y2),C(,y3),在双曲线y=上(k<0),则y1,y2,y3的大小关系是( )
A.y3<y1<y2B.y2<y1<y3C.y1<y2<y3D.y1<y3<y2
4.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为( )
A.4.5mB.4.8mC.5.5mD.6 m
5.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是( )
A.sinA=B.csA=C.tanA=D.csA=
6.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为( )
A.k>﹣1B.k≥﹣1C.k>﹣1且k≠0D.k≥﹣1且k≠0
7.如图,已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,则A1的坐标是( )
A.(﹣1,2)B.(2,﹣1)C.(1,﹣2)D.(﹣2,1)
8.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为( )
A.40°B.50°C.80°D.100°
9.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正确结论的是( )
A.①③④B.②④⑤C.①③⑤D.①③④⑤
10.如图,转盘的红色扇形圆心角为120°.让转盘自由转动2次,指针1次落在红色区域,1次落在白色区域的概率是( )
A.B.C.D.
11.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下列四个结论:
①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()
A.4个B.3个C.2个D.1个
12.用配方法将方程变形为,则的值是( )
A.4B.5C.6D.7
二、填空题(每题4分,共24分)
13.二次函数y=2x2﹣4x+4的图象如图所示,其对称轴与它的图象交于点P,点N是其图象上异于点P的一点,若PM⊥y轴,MN⊥x轴,则=_____.
14.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组的解是________.
15.如图,如果一只蚂蚁从圆锥底面上的点B出发,沿表面爬到母线AC的中点D处,则最短路线长为_____.
16.如图,在△ABC中,DE∥BC,AE:EC=2:3,DE=4,则BC=__________.
17.已知二次函数的自变量与函数的部分对应值列表如下:
则关于的方程的解是______.
18.sin245°+ cs60°=____________.
三、解答题(共78分)
19.(8分)(1)计算:﹣|﹣3|+ cs60°; (2)化简:
20.(8分)如图,斜坡的坡度是1:2.2(坡面的铅直高度与水平宽度的比称为坡度),这个斜坡的水平宽度是22米,在坡顶处的同一水平面上()有一座古塔.在坡底处看塔顶的仰角是45°,在坡顶处看塔顶的仰角是60°,求塔高的长.(结果保留根号)
21.(8分)如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.
(1)请你根据图象提供的信息求出此蓄水池的总蓄水量;
(2)写出此函数的解析式;
(3)若要6 h排完水池中的水,那么每小时的排水量应该是多少?
22.(10分)赵化鑫城某超市购进了一批单价为16元的日用品,销售一段时间后,为获得更多的利润,商场决定提高销售的价格,经试验发现,若按每件20元销售,每月能卖360件;若按每件25元销售,每月能卖210件;若每月的销售件数y(件)与价格x(元/件)满足y=kx+b.
(1)求出k与b的值,并指出x的取值范围?
(2)为了使每月获得价格利润1920元,商品价格应定为多少元?
(3)要使每月利润最大,商品价格又应定为多少?最大利润是多少?
23.(10分)在△ABC中,,以边AB上一点O为圆心,OA为半径的圈与BC相切于点D,分别交AB,AC于点E,F
(I)如图①,连接AD,若,求∠B的大小;
(Ⅱ)如图②,若点F为的中点,的半径为2,求AB的长.
24.(10分)如图,一次函数的图象与反比例函数在第一象限的图象交于和B两点,与x轴交于点C.
(1)求反比例函数的解析式;
(2)若点P在x轴上,且的面积为5,求点P的坐标.
25.(12分)如图,在中 ,连接,点,分别是的点(点不与点重合),,相交于点.
(1)求,的长;
(2)求证:~;
(3)当时,请直接写出的长.
26.(12分)游乐园新建的一种新型水上滑道如图,其中线段表示距离水面(x轴)高度为5m的平台(点P在y轴上).滑道可以看作反比例函数图象的一部分,滑道可以看作是二次函数图象的一部分,两滑道的连接点B为二次函数的顶点,且点B到水面的距离,点B到y轴的距离是5m.当小明从上而下滑到点C时,与水面的距离,与点B的水平距离.
(1)求反比例函数的关系式及其自变量的取值范围;
(2)求整条滑道的水平距离;
(3)若小明站在平台上相距y轴的点M处,用水枪朝正前方向下“扫射”,水枪出水口N距离平台,喷出的水流成抛物线形,设这条抛物线的二次项系数为p,若水流最终落在滑道上(包括B、D两点),直接写出p的取值范围.
参考答案
一、选择题(每题4分,共48分)
1、D
2、A
3、A
4、D
5、B
6、C
7、A
8、B
9、D
10、C
11、B
12、B
二、填空题(每题4分,共24分)
13、1.
14、.
15、3.
16、1
17、,
18、1
三、解答题(共78分)
19、(1);(2)
20、米
21、(1)48000 m3(2)V= (3)8000 m3
22、(1)k=﹣30,b=960,x取值范围为16≤x≤32;(2)商品的定价为24元;(3)商品价格应定为24元,最大利润是1元.
23、 (1)∠B=40°;(2)AB= 6.
24、(1) (2)P的坐标为或
25、(1)AD=10,BD=10;(2)见解析;(3)AG=.
26、(1),;(2)7m;(3).
…
-3
-2
-1
0
…
…
0
-3
-4
-3
…
山西省兴县交楼申中学2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份山西省兴县交楼申中学2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了sin 30°的值为等内容,欢迎下载使用。
山西省(朔州地区)2023-2024学年九上数学期末考试试题含答案: 这是一份山西省(朔州地区)2023-2024学年九上数学期末考试试题含答案,共7页。试卷主要包含了下列命题中,真命题是,抛物线 y=,若3x=2y等内容,欢迎下载使用。
2023-2024学年山西省吕梁市兴县康宁中学九上数学期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年山西省吕梁市兴县康宁中学九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,方程的根是,方程﹣1=的解是,定义等内容,欢迎下载使用。