上海市闵行区文莱中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图,过反比例函数的图象上一点作轴于点,连接,若,则的值为( )
A.2B.3C.4D.5
2.如图,若点M是y轴正半轴上的任意一点,过点M作PQ∥x轴,分别交函数y=(y>0)和y=(y>0)的图象于点P和Q,连接OP和OQ,则下列结论正确是( )
A.∠POQ不可能等于90°
B.
C.这两个函数的图象一定关于y轴对称
D.△POQ的面积是
3.如果,那么( )
A.B. C.D.
4.小明沿着坡度为的山坡向上走了,则他升高了( )
A.B.C.D.
5.下列四个几何体中,主视图与俯视图不同的几何体是( )
A.B.
C.D.
6.若点 A、B、C 都在二次函数的图象上,则的大小关系为( )
A.B.C.D.
7.如图,点A,B,C,D都在上,OA⊥BC,∠AOB=40°,则∠CDA的度数为( )
A.40°B.30°C.20°D.15°
8.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是( )
A.B.C.D.
9.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为( )
A.B.C.D.
10.如图,在△ABC中,D,E分别是AB,BC边上的点,且DE∥AC,若,,则△ACD的面积为( )
A.64B.72C.80D.96
11.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=( )
A.1:3B.1:4C.2:3D.1:2
12.如图,直线分别与⊙相切于,且∥,连接,若,则梯形的面积等于( )
A.64B.48C.36D.24
二、填空题(每题4分,共24分)
13.已知在正方形ABCD中,点E、F分别为边BC与CD上的点,且∠EAF=45°,AE与AF分别交对角线BD于点M、N,则下列结论正确的是_____.
①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM;③BM+DN=MN;④BE+DF=EF
14.方程的解为________.
15.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分别为AC、AD上两动点,连接CF、EF,则CF+EF的最小值为_____.
16.2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有_____家公司参加了这次会议.
17.如果关于x的一元二次方程(m﹣2)x2﹣4x﹣1=0有实数根,那么m的取值范围是_____.
18.已知等腰三角形的两边长是方程x2﹣9x+18=0的两个根,则该等腰三角形的周长为_____.
三、解答题(共78分)
19.(8分)小红想利用阳光下的影长测量学校旗杆AB的高度.如图,她在地面上竖直立一根2米长的标杆CD,某一时刻测得其影长DE=1.2米,此时旗杆AB在阳光下的投影BF=4.8米,AB⊥BD,CD⊥BD.请你根据相关信息,求旗杆AB的高.
20.(8分)如图1,在平面直角坐标系中,函数(为常数,,)的图象经过点和,直线与轴,轴分别交于,两点.
(1)求的度数;
(2)如图2,连接、,当时,求此时的值:
(3)如图3,点,点分别在轴和轴正半轴上的动点.再以、为邻边作矩形.若点恰好在函数(为常数,,)的图象上,且四边形为平行四边形,求此时、的长度.
21.(8分)某游乐场试营业期间,每天运营成本为1000元.经统计发现,每天售出的门票张数(张)与门票售价(元/张)之间满足一次函数,设游乐场每天的利润为(元).(利润=票房收入-运营成本)
(1)试求与之间的函数表达式.
(2)游乐场将门票售价定为多少元/张时,每天获利最大?最大利润是多少元?
22.(10分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.
(1)如图1,在四边形中,,,对角线平分.求证:是四边形的“相似对角线”;
(2)如图2,已知是四边形的“相似对角线”,.连接,若的面积为,求的长.
23.(10分)小王去年开了一家微店,今年1月份开始盈利,2月份盈利2400元,4月份盈利达到3456元,且从2月份到4月份,每月盈利的平均增长率相同,试求每月盈利的平均增长率.
24.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.
(1)若某天该商品每件降价3元,当天可获利多少元?
(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);
(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
25.(12分)已知抛物线y=x2+bx+c经过原点,对称轴为直线x=1,求该抛物线的解析式.
26.(12分)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.
(1)求证:△BAE≌△BCF;
(2)若∠ABC=50°,则当∠EBA= °时,四边形BFDE是正方形.
参考答案
一、选择题(每题4分,共48分)
1、C
2、D
3、B
4、A
5、C
6、D
7、C
8、B
9、A
10、C
11、D
12、B
二、填空题(每题4分,共24分)
13、①②④
14、
15、
16、1
17、m≥﹣1且m≠1
18、1.
三、解答题(共78分)
19、旗杆AB的高为8m.
20、(1);(2);(3)
21、(1)w=;(2)游乐场将门票售价定为25元/张时,每天获利最大,最大利润是1500元
22、(1)见解析;(2)
23、
24、(1)若某天该商品每件降价3元,当天可获利1692元;
(2)2x;50﹣x.
(3)每件商品降价1元时,商场日盈利可达到2000元.
25、y=x2﹣2x.
26、(1)证明见试题解析;(2)1.
上海市长宁区高级中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案: 这是一份上海市长宁区高级中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,若反比例函数y=等内容,欢迎下载使用。
上海市闵行区闵行区莘松中学2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案: 这是一份上海市闵行区闵行区莘松中学2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案,共7页。试卷主要包含了计算 的结果是,抛物线y=等内容,欢迎下载使用。
2023-2024学年上海市闵行区文莱中学八年级数学第一学期期末复习检测模拟试题含答案: 这是一份2023-2024学年上海市闵行区文莱中学八年级数学第一学期期末复习检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如图,在中,,,,则的度数为,在式子,,,中,分式的个数是,已知分式的值为0,那么x的值是,点P等内容,欢迎下载使用。