2023-2024学年云南省泸西县逸圃初级中学九上数学期末学业质量监测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )
A.B.
C.D.
2.已知是一元二次方程的一个根,则等于( )
A.B.1C.D.2
3.如图,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,且AD=2,AB=3,AE=4,则AC等于( )
A.5B.6C.7D.8
4.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为( )
A.B.2C.D.
5.在双曲线的每一分支上,y都随x的增大而增大,则k的值可以是( )
A.2B.3C.0D.1
6.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是( )
A.B.C.D.
7.如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为( )
A.B.C.D.
8.如图,直线分别与⊙相切于,且∥,连接,若,则梯形的面积等于( )
A.64B.48C.36D.24
9.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是( )
A.B.C.D.
10.如图,∠AOB是放置在正方形网格中的一个角,则tan∠AOB( )
A.B.C.1D.
11.下列一元二次方程中有两个相等实数根的是( )
A.2x2-6x+1=0B.3x2-x-5=0C.x2+x=0D.x2-4x+4=0
12.已知关于x的方程x2+bx+a=0有一个根是﹣a(a≠0),则a﹣b的值为( )
A.a﹣b=1B.a﹣b=﹣1C.a﹣b=0D.a﹣b=±1
二、填空题(每题4分,共24分)
13.如图,AE,AD,BC分别切⊙O于点E、D和点F,若AD=8cm,则△ABC的周长为_______cm.
14.如图,在四边形中,,,,点为边上一点,连接.,与交于点,且,若,,则的长为_______________.
15.若反比例函数的图象在每一象限内,y随x的增大而增大,请写出满足条件的一个反比例函数的解折式___________.
16.在平面直角坐标系中,直线y=x-2与x轴、y轴分别交于点B、C,半径为1的⊙P的圆心P从点A(4,m )出发以每秒个单位长度的速度沿射线AC的方向运动,设点P运动的时间为t秒,则当t=_____秒时,⊙P与坐标轴相切.
17.如图,在四边形ABCD中,∠BAD=∠CDA=90°,AB=1,CD=2,过A,B,D三点的⊙O分别交BC,CD于点E,M,下列结论:
①DM=CM;②弧AB=弧EM;③⊙O的直径为2;④AE=AD.
其中正确的结论有______(填序号).
18.由n个相同的小正方体堆成的几何体,其视图如下所示,则n的最大值是_____.
三、解答题(共78分)
19.(8分)如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.
(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;
(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称.
20.(8分)知识改变世界,科技改变生活,导航装备的不断更新极大方便了人们的出行.周末,小强一家到两处景区游玩,他们从家处出发,向正西行驶160到达处,测得处在处的北偏西15°方向上,出发时测得处在处的北偏西60°方向上
(1)填空: 度;
(2)求处到处的距离即的长度(结果保留根号)
21.(8分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量(箱)与销售价(元/箱)之间的函数关系式.
(2)求该批发商平均每天的销售利润(元)与销售价(元/箱)之间的函数关系式.
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
22.(10分)如图,在8×8的正方形网格中,△AOB的顶点都在格点上.请在网格中画出△OAB的一个位似图形,使两个图形以点O为位似中心,且所画图形与△OAB的位似为2:1.
23.(10分)爸爸有一张“山西大剧院”的演出门票,计划通过“掷筹码”的游戏将门票奖励给哥哥或者弟弟,游戏规则如下:准备两个质量均匀的筹码,在第一个筹码的一面画上“×”,另一面画上“○”;在第二个筹码的一面画上“○”,另一面画上“△”.随机掷出两个筹码,当筹码落地后,若朝上的一面都是“○”,则哥哥获得门票;否则,弟弟获得门票.你认为这个游戏公平吗?说明理由.
24.(10分)如图,已知直线y=-2x+3与抛物线y=x2相交于A,B两点,O为坐标原点.
(1)求点A和B的坐标;
(2)连结OA,OB,求△OAB的面积.
25.(12分)某软件开发公司开发了A、B两种软件,每种软件成本均为1400元,售价分别为2000元、1800元,这两种软件每天的销售额共为112000元,总利润为28000元.
(1)该店每天销售这两种软件共多少个?
(2)根据市场行情,公司拟对A种软件降价销售,同时提高B种软件价格.此时发现,A种软件每降50元可多卖1件,B种软件每提高50元就少卖1件.如果这两种软件每天销售总件数不变,那么这两种软件一天的总利润最多是多少?
26.(12分)如图,在矩形ABCD中,AB=3,AD=6,点E在AD边上,且AE=4,EF⊥BE交CD于点F.
(1)求证:△ABE∽△DEF;
(2)求EF的长.
参考答案
一、选择题(每题4分,共48分)
1、A
2、D
3、B
4、D
5、C
6、A
7、A
8、B
9、D
10、C
11、D
12、B
二、填空题(每题4分,共24分)
13、16
14、
15、
16、1,3,5
17、①②④
18、1
三、解答题(共78分)
19、解:(1)所画△A1B1C1如图所示.
(2)所画△A2B2C2如图所示.
20、(1)45;(2)
21、(1);(2),;(3)当每箱苹果的销售价为55元时,可以获得最大利润,最大利润为1125元.
22、答案见解析.
23、游戏不公平,理由见解析.
24、(1)A(1,1) ,B(-3,9);(2)6.
25、(1)60;(2)1
26、(1)见解析;(2).
云南省曲靖市沾益县2023-2024学年九上数学期末学业质量监测模拟试题含答案: 这是一份云南省曲靖市沾益县2023-2024学年九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,抛物线y=﹣等内容,欢迎下载使用。
2023-2024学年云南省泸西县九上数学期末学业水平测试模拟试题含答案: 这是一份2023-2024学年云南省泸西县九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了下列事件中,属于必然事件的是等内容,欢迎下载使用。
2023-2024学年云南省曲靖市九上数学期末学业质量监测试题含答案: 这是一份2023-2024学年云南省曲靖市九上数学期末学业质量监测试题含答案,共8页。试卷主要包含了下列图形中,成中心对称图形的是,若,下列结论正确的是等内容,欢迎下载使用。