2023-2024学年云南省昭通市名校数学九上期末学业质量监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.抛物线y=(x+1)2+2的顶点( )
A.(﹣1,2) B.(2,1) C.(1,2) D.(﹣1,﹣2)
2.如图,正五边形ABCD内接于⊙O,连接对角线AC,AD,则下列结论:①BC∥AD;②∠BAE=3∠CAD;③△BAC≌△EAD;④AC=2CD.其中判断正确的是( )
A.①③④B.①②③C.①②④D.①②③④
3.在Rt△ABC中,∠C=90°,AB=5,BC=3,则tanA的值是( )
A.B.C.D.
4.若2a=3b,则下列比列式正确的是( )
A.B.C.D.
5.如图反比例函数 ()与正比例函数() 相交于两点A,B.若点A(1,2),B坐标是( )
A.(,)B.(,)C.(,)D.(,)
6.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为( )
A.(2,2),(3,2)B.(2,4),(3,1)
C.(2,2),(3,1)D.(3,1),(2,2)
7.已知二次函数的与的部分对应值如表:
下列结论:抛物线的开口向上;②抛物线的对称轴为直线;③当时,;④抛物线与轴的两个交点间的距离是;⑤若是抛物线上两点,则,其中正确的个数是( )
A.B.C.D.
8.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是( )
A.m≥1B.m≤1C.m>1D.m<1
9.将抛物线向右平移2个单位, 则所得抛物线的表达式为( )
A.B.
C.D.
10.己知a、b、c均不为0,且,若,则k=( )
A.-1B.0C.2D.3
11.下列说法中不正确的是( )
A.相似多边形对应边的比等于相似比
B.相似多边形对应角平线的比等于相似比
C.相似多边形周长的比等于相似比
D.相似多边形面积的比等于相似比
12.下列调查方式合适的是( )
A.对空间实验室“天空二号”零部件的检查,采用抽样调查的方式
B.了解炮弹的杀伤力,采用全面调查的方式
C.对中央台“新闻联播”收视率的调查,采用全面调查的方式
D.对石家庄市食品合格情况的调查,采用抽样调查的方式
二、填空题(每题4分,共24分)
13.如图所示,已知:点,,.在内依次作等边三角形,使一边在轴上,另一个顶点在边上,作出的等边三角形分别是第1个,第2个,第3个,…,则第个等边三角形的周长等于 .
14.如图,利用我们现在已经学过的圆和锐角三角函数的知识可知,半径 r 和圆心角θ及其所对的弦长 l之间的关系为,从而,综合上述材料当时,______.
15.如图,矩形ABCD的边AB上有一点E,ED,EC的中点分别是G,H,AD=4 cm,DC=1 cm,则△EGH的面积是______cm1.
16.将抛物线C1:y=x2﹣4x+1先向左平移3个单位,再向下平移2个单位得到将抛物线C2,则抛物线C2的解析式为:_____.
17.化简:-(sin60°﹣1)0﹣2cs30°=________________.
18.抛物线的顶点坐标是__________________.
三、解答题(共78分)
19.(8分)在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O是AB的中点,CE是△BCD的中线.
(1)如图a,连接OC,请直接写出∠OCE和∠OAC的数量关系: ;
(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使∠MON=∠ADB,ON与射线CA交于点N.
①如图b,猜想并证明线段OM和线段ON之间的数量关系;
②若∠BAC=30°,BC=m,当∠AON=15°时,请直接写出线段ME的长度(用含m的代数式表示).
20.(8分)如图,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19 m),另外三边利用学校现有总长38 m的铁栏围成.
(1)若围成的面积为180 m2,试求出自行车车棚的长和宽;
(2)能围成面积为200 m2的自行车车棚吗?如果能,请你给出设计方,如果不能,请说明理由.
21.(8分)已知抛物线的顶点在第一象限,过点作轴于点,是线段上一点(不与点、重合),过点作轴于点,并交抛物线于点.
(1)求抛物线顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围;
(2)若直线交轴的正半轴于点,且,求的面积的取值范围.
22.(10分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用15m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m1.
23.(10分) “十一”黄金周期间, 西安旅行社推出了“西安红色游”项目团购活动,收费标准如下:若总人数不超过25人,每人收费1000元;若总人数超过25人,每增加1人,每人收费降低20元(每人收费不低于700元),设有x人参加这一旅游项目的团购活动.
(1)当x=35时,每人的费用为______元.
(2)某社区居民组团参加该活动,共支付旅游费用27000元,求该社区参加此次“西安红色游”的人数.
24.(10分)如图,在△ABC中,AB=AC.
(1)若以点A为圆心的圆与边BC相切于点D,请在下图中作出点D;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)的条件下,若该圆与边AC相交于点E,连接DE,当∠BAC=100°时,求∠AED的度数.
25.(12分)如图,△ABC在坐标平面内,三个顶点的坐标分别为A(0,4),B(2,2),C(4,6)(正方形网格中,每个小正方形的边长为1)
(1)画出△ABC向下平移5个单位得到的△A1B1C1,并写出点B1的坐标;
(2)以点O为位似中心,在第三象限画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为1:2,直接写出点C2的坐标和△A2B2C2的面积.
26.(12分)如图,四边形是平行四边形,、是对角线上的两个点,且.求证:.
参考答案
一、选择题(每题4分,共48分)
1、A
2、B
3、A
4、C
5、A
6、C
7、B
8、D
9、D
10、D
11、D
12、D
二、填空题(每题4分,共24分)
13、
14、
15、2
16、y=(x+1)2﹣1
17、-1
18、(2,0) .
三、解答题(共78分)
19、(1)∠ECO=∠OAC;(2)①OM=ON,理由见解析,②EM的值为m+m或m﹣m
20、(1)长和宽分别为18 m,10 m;(2)不能,理由见解析
21、(1)函数解析式为y=x+4(x>0);(2)0≤S≤.
22、可以围成AB的长为15米,BC为10米的矩形
23、 (1)800;(2)该社区共有30人参加此次“西安红色游”
24、(1)详见解析;(2)65°.
25、(1)见解析,(2,﹣3);
(2)见解析,1.1.
26、见解析
山西省朔州市名校2023-2024学年数学九上期末学业质量监测模拟试题含答案: 这是一份山西省朔州市名校2023-2024学年数学九上期末学业质量监测模拟试题含答案,共8页。
2023-2024学年河南省许昌市名校数学九上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年河南省许昌市名校数学九上期末学业质量监测模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,《孙子算经》中有一道题等内容,欢迎下载使用。
2023-2024学年吉林省通化市名校数学九上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年吉林省通化市名校数学九上期末学业质量监测模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,按下面的程序计算等内容,欢迎下载使用。