邵东县2023-2024学年数学九年级第一学期期末学业质量监测试题含答案
展开
这是一份邵东县2023-2024学年数学九年级第一学期期末学业质量监测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,如图,的正切值为,当函数是二次函数时,a的取值为,在平面直角坐标系中,将点A等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()
A.B.
C.D.
2.如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是( )
A.B.
C.D.
3.如图,四边形是扇形的内接矩形,顶点P在弧上,且不与M,N重合,当P点在弧上移动时,矩形的形状、大小随之变化,则的长度( )
A.变大B.变小C.不变D.不能确定
4.如图,已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,点A、B恰好同时落在反比例函数(x>0)的图象上,则等于( )
A.3B.4C.5D.6
5.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )
A.①②③④B.①④C.②③④D.①②③
6.如图,的正切值为( )
A.B.C.D.
7.当函数是二次函数时,a的取值为( )
A.B.C.D.
8.在平面直角坐标系中,将点A(−1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是( )
A.(−4,−2)B.(2,2)C.(−2,2)D.(2,−2)
9.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为6,则k1﹣k2的值为( )
A.12B.﹣12C.6D.﹣6
10.在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.我国古代数学著作《九章算术》中记载了一个问题:“今有邑方不知大小,各开中门,出北门三十步有木,出西门七百五十步见木,问:邑方几何?”.其大意是:如图,一座正方形城池,A为北门中点,从点A往正北方向走30步到B处有一树木,C为西门中点,从点C往正西方向走750步到D处正好看到B处的树木,则正方形城池的边长为_____步.
12.如图,AB是⊙O的直径,AB=6,点C在⊙O上,∠CAB=30°,D为的中点,P是直径AB上一动点,则PC+PD的最小值为_____.
13.如图,在矩形ABCD中,AB=4,AD=3,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是______(结果保留π).
14.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若AOC=80°,则ADB的度数为( )
A.40° B.50° C.60° D.20°
15.b和2的比例中项是4,则b=__.
16.如图,正方形ABCD的边长为,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则△DMN的面积= .
17.如图,∠AOB=90°,且OA、OB分别与反比例函数、的图象交于A、B两点,则tan∠OAB的值是______.
18.已知中,,,,则的长为__________.
三、解答题(共66分)
19.(10分)元旦游园活动中,小文,小美,小红三位同学正在搬各自的椅子准备进行“抢凳子”游戏,看见李老师来了,小文立即邀请李老师参加,游戏规则如下:将三位同学的椅子背靠背放在教室中央,四人围着椅子绕圈行走,在行走过程中裁判员随机喊停,听到“停”后四人迅速抢坐在一张椅子上,没有抢坐到椅子的人淘汰,不能进入下一轮游戏.
(1)下列事件是必然事件的是 .
A.李老师被淘汰 B.小文抢坐到自己带来的椅子
C.小红抢坐到小亮带来的椅子 D.有两位同学可以进入下一轮游戏
(2)如果李老师没有抢坐到任何一张椅子,三位同学都抢坐到了椅子但都没有抢坐到自己带来的椅子(记为事件),求出事件的概率,请用树状图法或列表法加以说明.
20.(6分)已知□ABCD边AB、AD的长是关于x的方程=0的两个实数根.
(1)当m为何值时,四边形ABCD是菱形?
(2)当AB=3时,求□ABCD的周长.
21.(6分)如图,抛物线与轴交于、两点,与轴交于点.
(1)求点,点和点的坐标;
(2)在抛物线的对称轴上有一动点,求的值最小时的点的坐标;
(3)若点是直线下方抛物线上一动点,运动到何处时四边形面积最大,最大值面积是多少?
22.(8分)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C
(1)求抛物线的表达式;
(2)在直线AC的上方的抛物线上,有一点P(不与点M重合),使△ACP的面积等于△ACM的面积,请求出点P的坐标;
(3)在y轴上是否存在一点Q,使得△QAM为直角三角形?若存在,请直接写出点Q的坐标:若不存在,请说明理由.
23.(8分)一次函数y=x+2与y=2x﹣m相交于点M(3,n),解不等式组,并将解集在数轴上表示出来.
24.(8分)如图,△ABC的高AD与中线BE相交于点F,过点C作BE的平行线、过点F作AB的平行线,两平行线相交于点G,连接BG.
(1)若AE=2.5,CD=3,BD=2,求AB的长;
(2)若∠CBE=30°,求证:CG=AD+EF.
25.(10分)已知抛物线 y x2 mx 2m 4(m>0).
(1)证明:该抛物线与 x 轴总有两个不同的交点;
(2)设该抛物线与 x 轴的两个交点分别为 A,B(点 A 在点 B 的右侧),与 y 轴交于点 C,A,B,三点都在圆 P 上.
①若已知 B(-3,0),抛物线上存在一点 M 使△ABM 的面积为 15,求点 M 的坐标;
②试判断:不论 m 取任何正数,圆 P 是否经过 y 轴上某个定点?若是,求出该定点的坐标,若不是,说明理由.
26.(10分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
(1)根据图中信息求出m= ,n= ;
(2)请你帮助他们将这两个统计图补全;
(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?
(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、A
3、C
4、D
5、D
6、A
7、D
8、D
9、A
10、B
二、填空题(每小题3分,共24分)
11、1.
12、3
13、12﹣π
14、B.
15、1.
16、1.
17、
18、5或1
三、解答题(共66分)
19、(1)D;(2)图见解析,
20、(1);(2)1
21、(1)A(﹣1,0),B(l,0),C(0,﹣1);(1)P(,);(3)(-1,-1);2
22、(1)y=﹣x2+2x+3;(2)点P的坐标为:(2,3);(3)存在,点Q的坐标为:(0,1)或(0,3)或(0,)或(0,﹣)
23、﹣1<x≤3,见解析
24、(1);(2)见解析.
25、(1)见解析;(2)①M或或或;②是,圆 P经过 y 轴上的定点(0,1).
26、(1)100、35;(2)补图见解析;(3)800人;(4)
相关试卷
这是一份湖北荆门2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法中正确的是,对于二次函数y=2等内容,欢迎下载使用。
这是一份浙江省2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是等内容,欢迎下载使用。
这是一份安徽界首地区2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,点P1,方程等内容,欢迎下载使用。