辽宁省辽河油田欢喜岭第二初级中学2023-2024学年九上数学期末教学质量检测试题含答案
展开
这是一份辽宁省辽河油田欢喜岭第二初级中学2023-2024学年九上数学期末教学质量检测试题含答案,共10页。试卷主要包含了已知2a=3b等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cs24°≈0.91,tan24°=0.45)( )
A.21.7米B.22.4米C.27.4米D.28.8米
2.如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是( )
A.或B.或
C.或D.或
3.已知二次函数y=﹣2x2﹣4x+1,当﹣3≤x≤2时,则函数值y的最小值为( )
A.﹣15B.﹣5C.1D.3
4.为测量某河的宽度,小军在河对岸选定一个目标点A,再在他所在的这一侧选点B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD与BC的交点E,如图所示.若测得BE=90 m,EC=45 m,CD=60 m,则这条河的宽AB等于( )
A.120 mB.67.5 mC.40 mD.30 m
5.如图,在平面直角坐标系中,已知点的坐标是,点是曲线上的一个动点,作轴于点,当点的橫坐标逐渐减小时,四边形的面积将会( )
A.逐渐增大B.不变C.逐渐减小D.先减小后增大
6.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正确的有( )
A.1个B.2个C.3个D.4个
7.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=( )
A.B.C.D.
8.如图,△ABC与△A′B′C′是位似图形,PB′=BB′,A′B′=2,则AB的长为( )
A.1B.2C.4D.8
9.正方形ABCD内接于⊙O,若⊙O的半径是,则正方形的边长是( )
A.1B.2C. D.2
10.已知2a=3b(b≠0),则下列比例式成立的是( )
A.=B.C.D.
二、填空题(每小题3分,共24分)
11.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为______(精确到0.1).
12.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F,若AD=1,BD=2,BC=4,则EF=________.
13.已知△ABC中,tanB=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC面积的所有可能值为____________.
14.已知正六边形的外接圆半径为2,则它的内切圆半径为______.
15.在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有_________个
16.如图,点、、…在反比例函数的图象上,点、、……在反比例函数的图象上,,且,则(为正整数)的纵坐标为______.(用含的式子表示)
17.在一个不透明的袋子中装有除颜色外其余均相同的7个小球,其中红球2个,黑球5个,若再放入m个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于,则m的值为 .
18.如图示,在中,,,,点在内部,且,连接,则的最小值等于______.
三、解答题(共66分)
19.(10分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.
(1)求一次函数,反比例函数的表达式;
(2)求证:点C为线段AP的中点;
(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形.如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.
20.(6分)阅读理解,我们已经学习了点和圆、直线和圆的位置关系以及各种位置关系的数量表示,如下表:
类似于研究点和圆、直线和圆的位置关系,我们也可以用两圆的半径和两圆的圆心距(两圆圆心的距离)来刻画两圆的位置关系.如果两圆的半径分别为和(r1>r2),圆心距为d,请你通过画图,并利用d与和之间的数量关系探索两圆的位置关系.
21.(6分)把下列多项式分解因式:
(1).
(2).
22.(8分)如图,在△中,,,点从点出发,沿以每秒的速度向点运动,同时点从点出发,沿以的速度向点运动,设运动时间为秒
(1)当为何值时,.
(2)当为何值时,∥.
(3)△能否与△相似?若能,求出的值;若不能,请说明理由.
23.(8分)如图,在ABC中,点D,E分别在边AC,AB上,且AE·AB=AD·AC,连接DE,BD.
(1)求证:ADE~ABC.
(2)若点E为AB为中点,AD:AE=6:5,ABC的面积为50,求BCD面积.
24.(8分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件
(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元
请比较哪种方案的最大利润更高,并说明理由
25.(10分)如图,在正方形中,,点在正方形边上沿运动(含端点),连接,以为边,在线段右侧作正方形,连接、.
小颖根据学习函数的经验,在点运动过程中,对线段、、的长度之间的关系进行了探究.
下面是小颖的探究过程,请补充完整:
(1)对于点在、边上的不同位置,画图、测量,得到了线段、、的长度的几组值,如下表:
在、和的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数.
(2)在同一平面直角坐标系中,画出(1)中所确定的函数的图象:
(3)结合函数图像,解决问题:
当为等腰三角形时,的长约为
26.(10分)我县寿源壹号楼盘准备以每平方米元均价对外销售,由于国务院有关房地产的新政策出台,购房者持币观望,房地产开发商为了加快资金周转,对价格进行两次下调后,决定以每平方米元的均价开盘销售.
(1)求平均每次下调的百分率.
(2)某人准备以开盘均价购买一套平方米的住房,开发商给予以下两种优惠方案供选择:
①打折销售;
②不打折,一次性送装修费每平方米元.
试问哪种方案更优惠?
参考答案
一、选择题(每小题3分,共30分)
1、A
2、B
3、A
4、A
5、C
6、B
7、B
8、C
9、B
10、B
二、填空题(每小题3分,共24分)
11、0.1
12、
13、8或1.
14、
15、14
16、
17、1.
18、
三、解答题(共66分)
19、(1)y=x+1;y=(2)证明见解析;(3)存在,D(8,1).
20、见解析
21、(1);(2)
22、(1)秒;(2)秒;(3)能,秒或5秒
23、 (1)详见解析; (2)14
24、 (1) w=-10x2+700x-10000;(2) 即销售单价为35元时,该文具每天的销售利润最大;
(3) A方案利润更高.
25、(1);(2)画图见解析;(3)或或
26、(1)10%;(2)选择方案①更优惠.
投篮次数(n)
50
100
150
200
250
300
500
投中次数(m)
28
60
78
104
123
152
251
投中频率(m/n)
0.56
0.60
0.52
0.52
0.49
0.51
0.50
图形表示
(圆和圆的位置关系)
数量表示
(圆心距d与两圆的半径、的数量关系)
位置
位置
位置
位置
位置
位置
位置
相关试卷
这是一份湖北省咸宁市第六初级中学2023-2024学年九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了若两个相似三角形的面积之比为1,下列函数中,是反比例函数的是等内容,欢迎下载使用。
这是一份2023-2024学年辽宁省盘锦市辽河油田实验中学九年级(上)期中数学试卷(含解析),共28页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份武汉市第二初级中学2023-2024学年八上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了下列各点在函数的图象上的点的是等内容,欢迎下载使用。