山东省青岛市市北区2023-2024学年数学九年级第一学期期末预测试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是
A.B.C.D.
2.如图,一个可以自由转动的转盘被平均分成7个大小相同的扇形,每个扇形上分别写有“中”、“国”、“梦”三个字指针的位置固定,转动转盘停止后,指针指向“中”字所在扇形的概率是( )
A.B.C.D.
3.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( )
A.B.C.D.
4.如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直角边AC绕A点逆时针旋转至AC′,连接BC′,E为BC′的中点,连接CE,则CE的最大值为( ).
A.B.C.D.
5.已知关于x的方程x2﹣x+m=0的一个根是3,则另一个根是( )
A.﹣6B.6C.﹣2D.2
6.从拼音“nanhai”中随机抽取一个字母,抽中a的概率为( )
A.B.C.D.
7.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为,根据题意列方程得( )
A.B.C.D.
8.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为( )
A.k>﹣1B.k≥﹣1C.k>﹣1且k≠0D.k≥﹣1且k≠0
9.如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子( )
A.逐渐变长B.逐渐变短
C.长度不变D.先变短后变长
10.如果2是方程x2-3x+k=0的一个根,则常数k的值为( )
A.2B.1C.-1D.-2
二、填空题(每小题3分,共24分)
11.如图所示的网格是正方形网格,△和△的顶点都是网格线交点,那么∠∠_________°.
12.如图,以点O为位似中心,将四边形ABCD按1:2放大得到四边形A′B′C′D′,则四边形ABCD与四边形A′B′C′D′的面积比是_____.
13.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为__________ .
14.在中,,,,则____________
15.反比例函数的图象在一、三象限,则应满足_________________.
16.如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,,按此规律继续下去,则矩形AB2019C2019C2018的面积为_____.
17.已知点A关于原点的对称点坐标为(﹣1,2),则点A关于x轴的对称点的坐标为_________
18.已知一元二次方程有一个根为,则的值为________________.
三、解答题(共66分)
19.(10分)若x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:,.我们把它们称为根与系数关系定理.
如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:AB=====
请你参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为等腰直角三角形时,直接写出b2-4ac的值;
(2)当△ABC为等腰三角形,且∠ACB=120°时,直接写出b2-4ac的值;
(3)设抛物线y=x2+mx+5与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=120°.
20.(6分)如图,抛物线与直线恰好交于坐标轴上A、B两点,C为直线AB上方抛物线上一动点,过点C作CD⊥AB于D.
(1)求抛物线的解析式;
(2)线段CD的长度是否存在最大值?若存在,请求出线段CD长度的最大值,并写出此时点C的坐标;若不存在,请说明理由.
21.(6分)如图,为⊙的直径,为⊙上一点,为的中点.过点作直线的垂线,垂足为,连接.
(1)求证:;
(2)与⊙有怎样的位置关系?请说明理由.
22.(8分)在一个不透明的袋子中装有3个乒乓球,分别标有数字1,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子中随机摸出1个乒乓球,记下标号后放回,再从袋子中随机摸出1个乒乓球记下标号,用画树状图(或列表)的方法,求两次摸出的乒乓球标号之和是偶数的概率.
23.(8分)在平面直角坐标系中,点A、B的坐标分别是(0,3)、(﹣4,0),
(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF,并写出E、F的坐标;
(2)以O点为位似中心,将△AEF作位似变换且缩小为原来的,在网格内画出一个符合条件的△A1E1F1.
24.(8分)如图,ABCD是边长为1的正方形,在它的左側补一个矩形ABFE,使得新矩形CEFD与矩形ABEF相似,求BE的长.
25.(10分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.
(1)计划到2020年底,全省5G基站的数量是多少万座?;
(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.
26.(10分)如图1,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,,BE分别交AD、AC于点F、G.
(1)判断△FAG的形状,并说明理由;
(2)如图2,若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由;
(3)在(2)的条件下,若BG=26,BD﹣DF=7,求AB的长.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、A
4、B
5、C
6、B
7、B
8、C
9、A
10、A
二、填空题(每小题3分,共24分)
11、45
12、1:1.
13、
14、
15、
16、
17、 (1,2)
18、-1
三、解答题(共66分)
19、 (1)4;(2);(3)抛物线向上平移个单位后,向左或向右平移任意个单位都能使得度数由90°变为120°.
20、(1)y=-x2+2x+3;(2)存在,CD的最大值为,C()
21、(1)见解析;(2)与⊙相切,理由见解析.
22、图形见解析,概率为
23、(1)E(3,3),F(3,0);(2)见解析.
24、
25、(1)到2020年底,全省5G基站的数量是6万座;(2)2020年底到2022年底,全省5G基站数量的年平均增长率为.
26、(1)等腰三角形,理由见解析;(2)成立,理由见解析;(3).
山东省青岛市市北区2023-2024学年九年级上学期期中数学试题: 这是一份山东省青岛市市北区2023-2024学年九年级上学期期中数学试题,共22页。
山东省青岛市市北区2023-2024学年九年级上学期期末数学试题(): 这是一份山东省青岛市市北区2023-2024学年九年级上学期期末数学试题(),共7页。试卷主要包含了已知,则的值是______等内容,欢迎下载使用。
山东省青岛市市北区2023-2024学年九年级上学期期末数学试卷(含解析): 这是一份山东省青岛市市北区2023-2024学年九年级上学期期末数学试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。