2023-2024学年广东省广州市广州中学九上数学期末监测模拟试题含答案
展开这是一份2023-2024学年广东省广州市广州中学九上数学期末监测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x,则可以列方程为( )
A.B.
C.D.
2.在一块半径为的圆形钢板中裁出一个最大的等边三角形,此等边三角形的边长( )
A.B.C.D.
3.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=( )
A.1:3B.1:4C.2:3D.1:2
4.某经济技术开发区今年一月份工业产值达50亿元,且第一季度的产值为175亿元.若设平均每月的增长率为x,根据题意可列方程为( )
A.50(1+x)2=175B.50+50(1+x)2=175
C.50(1+x)+50(1+x)2=175D.50+50(1+x)+50(1+x)2=175
5.方程(m﹣2)x2+mx﹣1=0是关于x的一元二次方程,则m的值为( )
A.任何实数.B.m≠0C.m≠2D.m≠﹣2
6.四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )
A.B.C.D.1
7.《九章算术》是一本中国乃至东方世界最伟大的一本综合性数学著作,标志着中国古代数学形成了完整的体系.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”朱老师根据原文题意,画出了圆材截面图如图所示,已知:锯口深为1寸,锯道尺(1尺=10寸),则该圆材的直径长为( )
A.26寸B.25寸C.13寸D.寸
8.如图,将绕点旋转得到,设点的坐标为,则点的坐标为( )
A.B.
C.D.
9.已知是一元二次方程的解,则的值为( )
A.-5B.5C.4D.-4
10.如图在正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,AB∥DE,AE与BD相交于点C.若AC=4,BC=2,CD=1,则CE的长为_____.
12.如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…An,将抛物线y=x2沿直线L:y=x向上平移,得到一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…Mn都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…An,则顶点M2020的坐标为_____.
13.如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,如果AB=8cm,小圆直径径为6cm,那么大圆半径为_____cm.
14.如图,港口A在观测站O的正东方向,OA=4.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为____.
15.因式分解:ax3y﹣axy3=_____.
16.一个圆锥的母线长为5cm,底面圆半径为3 cm,则这个圆锥的侧面积是____ cm².(结果保留).
17.如图,在Rt△ABC中,∠C=90°,CA=CB=1.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是______.
18.如图,一段抛物线:y=-x(x-2)(0≤x≤2)记为C1 ,它与x轴交于两点O,A;将C1绕点A旋转180°得到C2 , 交x轴于A1;将C2绕点A1旋转180°得到C3 , 交x轴于点A2 . .....如此进行下去,直至得到C2018 , 若点P(4035,m)在第2018段抛物线上,则m的值为________.
三、解答题(共66分)
19.(10分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.
(1)求一次函数的表达式;
(2)若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.
20.(6分)已知x2﹣8x+16﹣m2=0(m≠0)是关于x的一元二次方程
(1)证明:此方程总有两个不相等的实数根;
(2)若等腰△ABC的一边长a=6,另两边长b、c是该方程的两个实数根,求△ABC的面积.
21.(6分)周末,小马和小聪想用所学的数学知识测量图书馆前小河的宽,测量时,他们选择河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.35m,BD=7m.测量示意图如图所示.请根据相关测量信息,求河宽AB.
22.(8分)如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.
(1)求证:△AED≌△EBC;
(2)当AB=6时,求CD的长.
23.(8分)如图,在平面直角坐标系中,点A,C分别在x轴,y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,tan∠ACB=,点E、F分别是线段AD、AC上的动点,(点E不与点A,D重合),且∠CEF=∠ACB.
(1)求AC的长和点D的坐标;
(2)求证:;
(3)当△EFC为等腰三角形时,求点E的坐标.
24.(8分)已知关于x的方程2x2﹣17x+m=0的一个根是1,求它的另一个根及m的值.
25.(10分)为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:
(1)本次抽样调查测试的建档立卡贫困户的总户数______.
(2)图1中,∠α的度数是______,并把图2条形统计图补充完整.
(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?
(4)调查人员想从5户建档立卡贫困户(分别记为)中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户的概率.
26.(10分)某百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件.
(1)若想要这种童装销售利润每天达到 1200 元,同时又能让顾客得到更多的实惠,每件童装应降价多少元?
(2)当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?
参考答案
一、选择题(每小题3分,共30分)
1、D
2、D
3、D
4、D
5、C
6、B
7、A
8、B
9、B
10、C
二、填空题(每小题3分,共24分)
11、1
12、(4039,4039)
13、1
14、1
15、axy(x+y)(x﹣y)
16、15π
17、1
18、-1
三、解答题(共66分)
19、(1);(2)1或9.
20、(1)证明见解析;(2)△ABC的面积为.
21、20米
22、(1)证明见解析;(2)CD =3
23、(1)AC=20,D(12,0);(2)见解析;(3)(8,0)或(,0).
24、x=7.5;m=15
25、(1)60;(2)54°;(3)1500户;(4)见解析,.
26、(1)每件童装应降价20元,(2)当x=15时,函数有最大值,即童装一天的销售利润最多为1250元.
相关试卷
这是一份广东省广州市广州中学2023-2024学年数学九上期末考试模拟试题含答案,共6页。
这是一份2023-2024学年广东省广州市番禺区数学九上期末学业质量监测模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2023-2024学年广东省广州市东环中学数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。