2023-2024学年山东省青岛开发区育才中学九上数学期末检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.若x=2是关于x的一元二次方程x2﹣2a=0的一个根,则a的值为( )
A.3B.2C.4D.5
2.如图,在平面直角坐标系中,若反比例函数过点,则的值为( )
A.B.C.D.
3.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为( )
A.B.C.D.6
4.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1 400件.若设这个百分数为,则可列方程( )
A.B.
C.D.
5.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:
给出下列说法:
①抛物线与y轴的交点为(0,6);
②抛物线的对称轴在y轴的左侧;
③抛物线一定经过(3,0)点;
④在对称轴左侧y随x的增大而减增大.
从表中可知,其中正确的个数为( )
A.4B.3C.2D.1
6.三角形在正方形网格纸中的位置如图所示,则的值是()
A.B.C.D.
7.点关于原点的对称点是
A.B.C.D.
8.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0; ②﹣1≤a≤; ③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为( )
A.1个B.2个C.3个D.4个
9.如图,是等边三角形,被一矩形所截,被截成三等分,EH∥BC,则四边形的面积是的面积的:( )
A.B.C.D.
10.下列计算中,结果是的是
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,△ABC内接于⊙O,若∠A=α,则∠OBC=_____.
12.若关于的分式方程有增根,则的值为__________.
13.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为________.
14.如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD长度为__cm.
15.如图,一块含30°的直角三角板ABC(∠BAC=30°)的斜边AB与量角器的直径重合,与点D对应的刻度读数是54°,则∠BCD的度数为_____度.
16.在中,,,,则____________
17.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m个白球和4个黑球,使得摸到白球的概率为,则m=__.
18.如图,是以点为圆心的圆形纸片的直径,弦于点,.将阴影部分沿着弦翻折压平,翻折后,弧对应的弧为,则点与弧所在圆的位置关系为____________.
三、解答题(共66分)
19.(10分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(-2,-2) , B(-4,-1) , C(-4,-4).
(1) 画出与△ABC关于点P(0,-2)成中心对称的△A1B1C1,并写出点A1的坐标;
(2) 将△ABC绕点O顺时针旋转的旋转90°后得到△A2B2C2,画出△A2B2C2,并写出点C2的坐标.
20.(6分)采用东阳南枣通过古法熬制而成的蜜枣是我们东阳的土特产之一,已知蜜枣每袋成本10元.试销后发现每袋的销售价(元)与日销售量(袋)之间的关系如下表:
若日销售量是销售价的一次函数,试求:
(1)日销售量(袋)与销售价(元)的函数关系式.
(2)要使这种蜜枣每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?
21.(6分)如图,正方形ABCD 中,E,F分别是AB,BC边上的点,AF与DE相交于点G,且AF=DE.
求证:(1)BF=AE;
(2)AF⊥DE.
22.(8分)如图,为的直径,、为上两点,,,垂足为.直线交的延长线于点,连接.
(1)判断与的位置关系,并说明理由;
(2)求证:.
23.(8分)已知,且2x+3y﹣z=18,求4x+y﹣3z的值.
24.(8分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,篮球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.
(1)求口袋中黄球的个数;
(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
(3)现规定:摸到红球得5分,摸到黄球得3分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.
25.(10分)已知二次函数y=x2-2x+m(m为常数)的图像与x轴相交于A、B两点.
(1)求m的取值范围;
(2)若点A、B位于原点的两侧,求m的取值范围.
26.(10分)小明准备进行如下操作实验:把一根长为的铁丝剪成两段,并把每一段围成一个正方形.
(1)要使这两个正方形的面积之和等于,小明该怎么剪?
(2)小刚对小明说:“这两个正方形的面积之和不可能等于.”小刚的说法对吗?请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、A
4、B
5、B
6、A
7、C
8、C
9、B
10、D
二、填空题(每小题3分,共24分)
11、90°﹣α.
12、3
13、-6
14、3
15、1.
16、
17、1
18、点在圆外
三、解答题(共66分)
19、(1)详见解析;(2,-2);(2)详见解析;(-4,4)
20、 (1) ;(2) 要使这种蜜枣每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.
21、 (1)见解析;(2)见解析.
22、(1)EF与⊙O相切,理由见解析;(2)证明见解析.
23、x=4,y=6,z=8.
24、 (1)黄球有1个;(2);(3).
25、(1)m<1;(2)m<0
26、(1)剪成40cm和80cm的两段;(2)小刚的说法正确,理由见解析.
x
…
﹣3
﹣2
﹣1
0
1
…
y
…
﹣6
0
4
6
6
…
(元)
15
20
30
…
(袋)
25
20
10
…
2023-2024学年山东省青岛市崂山区育才中学九年级(上)期末数学试题: 这是一份2023-2024学年山东省青岛市崂山区育才中学九年级(上)期末数学试题,文件包含2023-2024学年山东省青岛市崂山区育才中学九年级上期末数学试题docx、2023-2024崂山育才答案pdf等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
山东省青岛开发区育才中学2023-2024学年九年级数学第一学期期末综合测试试题含答案: 这是一份山东省青岛开发区育才中学2023-2024学年九年级数学第一学期期末综合测试试题含答案,共7页。
2023-2024学年山东省广饶经济开发区乐安中学九上数学期末质量检测试题含答案: 这是一份2023-2024学年山东省广饶经济开发区乐安中学九上数学期末质量检测试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。