|试卷下载
搜索
    上传资料 赚现金
    阶段性检测2.2(中)(范围:集合至复数)-备战2024年高考数学一轮复习高分突破(新高考通用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      阶段性检测2.2(中)(范围:集合至复数)(解析版).docx
    • 练习
      阶段性检测2.2(中)(范围:集合至复数)(考试版).docx
    阶段性检测2.2(中)(范围:集合至复数)-备战2024年高考数学一轮复习高分突破(新高考通用)01
    阶段性检测2.2(中)(范围:集合至复数)-备战2024年高考数学一轮复习高分突破(新高考通用)02
    阶段性检测2.2(中)(范围:集合至复数)-备战2024年高考数学一轮复习高分突破(新高考通用)03
    阶段性检测2.2(中)(范围:集合至复数)-备战2024年高考数学一轮复习高分突破(新高考通用)01
    阶段性检测2.2(中)(范围:集合至复数)-备战2024年高考数学一轮复习高分突破(新高考通用)02
    阶段性检测2.2(中)(范围:集合至复数)-备战2024年高考数学一轮复习高分突破(新高考通用)03
    还剩16页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    阶段性检测2.2(中)(范围:集合至复数)-备战2024年高考数学一轮复习高分突破(新高考通用)

    展开
    这是一份阶段性检测2.2(中)(范围:集合至复数)-备战2024年高考数学一轮复习高分突破(新高考通用),文件包含阶段性检测22中范围集合至复数解析版docx、阶段性检测22中范围集合至复数考试版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
    1.已知集合,则( )
    A.B.C.D.
    【答案】A
    【分析】集合为不等式的解集,集合为函数的定义域,分别求解即可.
    【详解】由解得,
    函数,由得,.
    所以.
    故选:A.
    2.已知非零复数满足,则的共轭复数是( )
    A.B.C.D.
    【答案】A
    【分析】设复数,代入中化简,再利用复数相等的条件列方程组可求出,从而可求出复数,进而可求出的共轭复数
    【详解】设复数,由,得
    ,化简得,
    所以,解得(舍去),或,
    所以,则,
    故选:A
    3.如图,平行四边形中,点E为BC的中点,点F在线段AE上,且,记,,则( )

    A.B.
    C.D.
    【答案】D
    【分析】利用平面向量基本定理,结合平行四边形的性质求解即可.
    【详解】因为平行四边形中,是的中点,,,
    所以
    .
    故选:D.
    4.已知把物体放在空气中冷却时,若物体原来的温度是,空气的温度是,则后物体的温度满足公式(其中k是一个随着物体与空气的接触状况而定的正常数).某天小明同学将温度是的牛奶放在空气中,冷却后牛奶的温度是,则下列说法正确的是( )
    A.
    B.
    C.牛奶的温度降至还需
    D.牛奶的温度降至还需
    【答案】D
    【分析】运用代入法,结合对数的运算逐一判断即可.
    【详解】由,得,
    故,AB错误;
    又由,,得,
    故牛奶的温度从降至需,
    从降至还需.
    故选:D
    5.泰姬陵是印度在世界上知名度最高的古建筑之一,被列为“世界文化遗产”.秦姬陵是印度古代皇帝为了纪念他的皇妃建造的,于1631年开始建造,用时22年,距今已有366年历史.如图所示,为了估算泰姬陵的高度,现在泰姬陵的正东方向找一参照物,高约为,在它们之间的地面上的点Q(B,Q,D三点共线)处测得处、泰姬陵顶端处的仰角分别是和,在处测得泰姬陵顶端处的仰角为,则估算泰姬陵的高度为( )

    A.B.C.D.
    【答案】A
    【分析】由题设可得,应用正弦定理求得,进而求.
    【详解】由题设且,在测得泰姬陵顶端处仰角为,
    所以,则,
    所以,故.
    故选:A
    6.若:,则成立的一个充分不必要条件为( )
    A.B.
    C.D.
    【答案】B
    【分析】分别解一元二次不等式、对数式不等式、指数式不等式、分式不等式即可判断充分性与必要性,即可得答案.
    【详解】对于A,由可得,解得,所以“”是成立的一个既不充分也不必要条件,故A不符合;
    对于B,可得,则,解得,所以“”成立的一个充分不必要条件,故B符合;
    对于C,可得,则,解得,所以“”是成立的一个必要不充分条件,故C不符合;
    对于D,由可解得或,故“”是成立的一个既不充分也不必要条件,故D不符合.
    故选:B.
    7.已知二次函数的两个零点为,若,,则的取值范围是( )
    A.B.C.D.
    【答案】D
    【分析】根据函数零点的定义,结合一元二次方程根与系数的关系进行求解即可.
    【详解】由,,得,,由,
    由,解得,


    故选:D
    【点睛】关键点睛:根据已知不等式得到是解题的关键.
    8.设,,,下列判断正确的是( )
    A.B.
    C.D.
    【答案】D
    【分析】根据,,,设,分构造函数和函数,利用其单调性比较.
    【详解】解:因为,,,
    设,则构造函数,有,则单调递增,且,所以;
    再构造函数,有,则单调递增,且,所以,
    综上:.
    故选:D
    二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
    9.已知为虚数单位,则( )
    A.若复数的共轭复数为,则
    B.若,则的充要条件是
    C.若复数,则,
    D.若复数,则
    【答案】ACD
    【分析】由共轭复数的定义,复数模公式判断;由题意可知,,不一定是的实部和虚部,结合充分必要条件的对于判断B;由实数的运算性质判断C;由复数的四则运算及复数模公式判断D.
    【详解】设,则,,故A正确;
    由,知,不一定是的实部和虚部,不一定得到,故B错误;
    复数,只有实数可以比较大小,虚数不能比较大小,则,,故C正确;
    ,则,故D正确.
    故选:ACD.
    10.已知函数的图象关于直线对称,则( )
    A.函数为奇函数
    B.函数在上单调递增
    C.若,则的最小值为
    D.将函数图象上所有点的横坐标缩小为原来的,得到函数的图象
    【答案】AB
    【分析】利用三角函数的图象与性质结合图象变换一一判定即可.
    【详解】由题意可知,又,
    故,
    对于A项,,由诱导公式知,即函数为奇函数,故A正确;
    对于B项,,由正弦函数的图象及性质可知函数在上单调递增,故B正确;
    对于C项,易知,若,则与一个取得最大值,一个取得最小值,即与相隔最近为半个周期,即的最小值为,故C错误;
    对于D项,由三角函数的伸缩变换可知,函数图象上所有点的横坐标缩小为原来的,得到函数的图象,故D错误.
    故选:AB.
    11.在中,,,,为内任意一点(含边界),且,则的值可能是( )
    A.B.C.D.
    【答案】BCD
    【分析】以点为坐标原点,、所在直线分别为、轴建立平面直角坐标系,设点,利用平面向量数量积的坐标运算、辅助角公式以及正弦型函数的基本性质可求得的取值范围,即可得出合适的选项.
    【详解】在中,,,,
    以点为坐标原点,、所在直线分别为、轴建立如下图所示的平面直角坐标系,

    则、、,
    因为为内任意一点(含边界),且,设点,
    ,,
    所以,,
    为锐角,且,
    因为,则,
    由可得,由得,
    所以,函数在上单调递减,在上单调递增,
    所以,,
    又因为,,则,
    故选:BCD.
    12.已知函数,的定义域均为R,且满足,,,则( )
    A.4为的周期
    B.为奇函数
    C.
    D.
    【答案】AD
    【分析】根据函数的对称性,周期性判断A,根据与的关系及周期性判断B,根据中心对称的性质及周期性可判断CD.
    【详解】对于A,因为,所以的对称中心为,
    因为,所以,又,
    所以,所以,即,
    所以,即的周期为4,
    又,所以的周期也为4,故A正确;
    对于B,因为,所以,
    又由A知周期为4,即,所以,为偶函数,故B错误;
    对于C,由对称中心为,得,
    又因为直线为对称轴,所以,所以关于点对称,
    所以和关于点对称,
    所以,所以,
    所以,故C错误;
    对于D,由C得,因为,
    所以,,,,
    所以

    又因为的周期为4,
    所以,故D正确.
    故选:AD.
    三、填空题:本题共4小题,每小题5分,共20分。
    13.为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W与时间t的关系为,用的大小评价在这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.

    给出下列三个结论:
    ①在这段时间内,甲企业的污水治理能力比乙企业强;
    ②在时刻,甲、乙两企业的污水排放都已达标;
    ③甲企业在,,这三段时间中,在的污水治理能力最强.
    其中所有正确结论的序号是 .
    【答案】①②
    【分析】根据图形及两点的斜率公式即可求解.
    【详解】表示两点,连线斜率的相反数,
    因此斜率越大,污水治理能力越弱.
    由题图可知甲企业的污水排放量在时刻高于乙企业,而在时刻甲、乙两企业的污水排放量相同,故在这段时间内,甲企业的污水治理能力比乙企业强,故①正确;
    在时刻,甲、乙两企业的污水排放量都低于污水达标排放量,故都已达标,②正确;
    甲企业在,,这三段时间中,在时对应的两点连线的斜率最小,因此在的污水治理能力最强,故③错误.
    故答案为:①②.
    14.已知函数在上单调递减,对任意,均有,记,,则函数的最小值为 .
    【答案】3
    【分析】利用赋值法,函数的单调性以及基本不等式的性质求解即可.
    【详解】设,则,
    又,
    ∴,
    ∵在上单调递减,
    ∴,
    得,
    得,
    得或(不合题意),
    ∴.
    当且仅当时“=”成立.
    故答案为:3.
    15.设,,且,则 .
    【答案】
    【分析】对式子变形得,,再根据同角三角函数基本关系及两角和正弦公式求得,从而求出角.
    【详解】由已知配方得,
    解得,,又,,所以,,
    所以,,所以.
    故答案为:
    16.“完全数”是一类特殊的自然数,它的所有正因数的和等于它自身的两倍.寻找“完全数”用到函数:,为n的所有正因数之和,如,则 ; .
    【答案】 42
    【分析】根据为n的所有正因数之和,直接计算,分析的正因数的特点,利用等比数列求和求解.
    【详解】根据新定义可得,,
    因为正因数,
    所以
    故答案为:;
    四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步棸。
    17.已知函数,,.
    (1)若图象的相邻两条对称轴之间的距离为,求的值;
    (2)若在上单调递增,且,再从条件①、条件②、条件③这三个条件中选择一个作为己知.求、的值.
    条件①:
    条件②:是的一个零点;
    条件③:
    【答案】(1)
    (2)答案见解析
    【分析】(1)利用二倍角公式及两角和的正弦公式化简,再根据周期求出;
    (2)若选条件①不合题意;若选条件②,先把的解析式化简,根据在上的单调性及零点可求出,从而求出的值,把的值代入的解析式,由和即可求出的值;若选条件③:由的单调性可知在处取得最小值,从而求出,得到的值,同理求出的值.
    【详解】(1)因为

    又图象的相邻两条对称轴之间的距离为,,
    即最小正周期,解得.
    (2)由(1)可得,则,
    若选条件①:,又,且在上单调递增,
    所以在上单调递增,与在上单调递增矛盾,故条件①不能使函数存在;
    若选条件②:是的一个零点,又在上单调递增,且,
    所以,则,解得,
    所以,又,,解得,,
    因为,所以,经检验符合题意,即、;
    若选条件③:,又在上单调递增,且,
    所以,
    所以,则,解得,
    所以,又,,解得,,
    因为,所以,经检验符合题意,即、;
    18.为虚数单位
    (1)已知复数,求的虚部.
    (2)在复数范围内解方程.
    【答案】(1)
    (2)或
    【分析】(1)利用复数的除法化简复数,利用复数的概念可得结果;
    (2)设,则,利用复数的四则运算以及复数相等可得出关于、的方程组,解出这两个量的值,即可得出复数.
    【详解】(1)解:,故的虚部为.
    (2)解:设,则,
    由可得,所以,,解得,
    因此,或.
    19.北京时间2023年3月30日18时50分,中国在太原卫星发射中心成功将宏图一号01组卫星发射升空,卫星顺利进入预定轨道,发射任务获得圆满成功.据了解,在不考虑空气动力和地球引力的理想状态下,可以用公式计算火箭的最大速度(单位:),其中(单位:)是喷流相对速度,(单位:)是火箭(除推进剂外)的质量,(单位:)是推进剂与火箭质量的总和,称为总质比,已知A型火箭的喷流相对速度为.
    (1)当总质比为200时,利用给出的参考数据求A型火箭的最大速度;
    (2)经过材料更新和技术改进后,A型火箭的喷流相对速度提高到了原来的倍,总质比变为原来的,若要使火箭的最大速度至少增加,求在材料更新和技术改进前总质比的最小整数值.
    参考数据:,.
    【答案】(1)最大速度约为
    (2)74
    【分析】(1)由,代入已知公式计算;
    (2)根据题意列出不等式求解即可.
    【详解】(1)当总质比为200时,,
    ∴当总质比为200时,A型火箭的最大速度约为.
    (2)由题意,经过材料更新和技术改进后,A型火箭的喷流相对速度为,总质比变为,
    要使火箭的最大速度至少增加,则需,
    化简得,,
    ∴,整理得,∴,则,
    由参考数据,知,
    ∴,
    ∴材料更新和技术改进前总质比的最小整数值为74.
    20.在锐角中,角的对边分别为,,,已知且.
    (1)求角A的大小;
    (2)若,求的面积;
    (3)求的取值范围.
    【答案】(1)
    (2)
    (3)
    【分析】(1)根据题意结合三角恒等变换运算求解;
    (2)先利用余弦定理求得,进而可求面积;
    (3)利用正弦定理边化角,结合三角恒等变换可得,结合正弦函数的有界性运算求解.
    【详解】(1)因为,
    且,则,可得,
    整理得,所以.
    (2)由余弦定理,即,
    解得或(舍去),
    所以的面积.
    (3)由正弦定理,可得,


    因为为锐角三角形,且,则,解得,
    则,可得,
    则,
    所以的取值范围为.
    21.在中,,,,.
    (1)用向量和向量分别表示向量,;
    (2)若,且角为直角,求的值.
    【答案】(1);
    (2)
    【分析】(1)根据条件,结合向量加减法法则即可求解;
    (2)根据、角是直角即可求解的值.
    【详解】(1)


    (2)由题意可知,,

    因角是直角,则,
    ,化简为,
    此时,
    综上,的值是.
    22.已知函数,其中.
    (1)讨论函数的单调性;
    (2)若方程有三个根,求的取值范围.
    【答案】(1)答案见解析
    (2).
    【分析】(1)求导,再分,,讨论求解;
    (2)由方程有三个根,转化为有三个根,进而利用数形结合法,由与函数的图象有三个交点求解.
    【详解】(1)解:由题意得函数的定义域为,

    当时,,即在上单调递增;
    当时,由,得或,由,得,
    在上单调递减,在和上单调递增;
    当时,由得或,由得,
    在上单调递减,在和上单调递增,
    综上所述,当时,在上单调递增;
    当时,在上单调递减,在和上单调递增;
    当时,在上单调递减,在和上单调递增;
    (2)方程有三个根,即有三个根,
    有三个根,显然不是方程的根,
    则有三个根,即与函数的图象有三个交点,
    ,令,可得,
    由,可得或,由,可得,
    则在和上单调递增,在上单调递减,
    在处取得极大值为,
    当时,,当时,,
    当时,,当时,,
    如图所示:

    要使与函数的图象有三个交点,
    只需,的取值范围是.
    相关试卷

    阶段性检测3.3(难)(范围:集合至立体几何)-备战2024年高考数学一轮复习高分突破(新高考通用): 这是一份阶段性检测3.3(难)(范围:集合至立体几何)-备战2024年高考数学一轮复习高分突破(新高考通用),文件包含阶段性检测33难范围集合至立体几何原卷版docx、阶段性检测33难范围集合至立体几何解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    阶段性检测3.2(中)(范围:集合至立体几何)-备战2024年高考数学一轮复习高分突破(新高考通用): 这是一份阶段性检测3.2(中)(范围:集合至立体几何)-备战2024年高考数学一轮复习高分突破(新高考通用),文件包含阶段性检测32中范围集合至立体几何原卷版docx、阶段性检测32中范围集合至立体几何解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。

    阶段性检测3.1(易)(范围:集合至立体几何)-备战2024年高考数学一轮复习高分突破(新高考通用): 这是一份阶段性检测3.1(易)(范围:集合至立体几何)-备战2024年高考数学一轮复习高分突破(新高考通用),文件包含阶段性检测31易范围集合至立体几何原卷版docx、阶段性检测31易范围集合至立体几何解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        阶段性检测2.2(中)(范围:集合至复数)-备战2024年高考数学一轮复习高分突破(新高考通用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map