河南省洛阳市偃师市2022-2023学年八年级上学期期末模拟测试数学试卷(含解析)
展开1. “新冠病毒”肆虐,全国上下齐心协力、众志成城,坚决打赢“新冠肺炎”阻击战,下列防疫的图标中是轴对称图形的是( )
A. B. C. D.
2. 肥皂泡的泡壁厚度大约是,用科学记数法表示为( ).
A. 7×10-4B. 7×10-5C. 0.7×10-4D. 0.7×10-5
3. 计算(4a3 12a2b 8a3b2) ÷ (4a2)的结果是( )
A. a 3b 2ab2B. a2 3b 2ab
C. a 2abD. 1.5a 3b
4. 已知正多边形的一个内角是135°,则这个正多边形的边数是( )
A. 3B. 4C. 6D. 8
5. 一副三角板按如图所示叠放在一起,则图中的度数为( )
A. B. C. D.
6. 如图,要测量池塘两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C,D,使BC=CD.再作出BF的垂线DE,使A,C,E三点在一条直线上,通过证明ΔABC≌ΔEDC,得到DE的长就等于AB的长,这里证明三角形全等的依据是( )
A. HLB. SASC. SSSD. ASA
7. 练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有
① ②
③ ④
A. 1个B. 2个C. 3个D. 4个
8. 如图,在长方形ABCD中,连接AC,以A为圆心,适当长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,大于的长为半径画弧,两弧在内交于点H,画射线AH交DC于点M.若,则的大小为( )
A. B. C. D.
9. 下列多项式不能用公式法进行因式分解的是( )
A. 1 a2B.
C. x2 2xy y2D. 4x2 4x 1
10. 如图,是等边三角形,D是线段上一点(不与点重合),连接,点分别在线段的延长线上,且,点D从B运动到C的过程中,周长的变化规律是( )
A. 不变B. 一直变小C. 先变大后变小D. 先变小后变大
二.填空题(共5题,总计 15分)
11. 因式分解:____________
12. 一个多边形的每一个内角都是120°,则此多边形从一个顶点出发可以引__________条对角线.
13. 若一个直角三角形的两边长分别是4cm,3cm,则第三条边长是________cm.
14. 如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是______.
15. 对实数a、b,定义运算☆如下:a☆b=,例如:2☆3=2﹣3=,则计算:[2☆(﹣4)]☆1=_____.
三.解答题(共8题,总计75分)
16. (1)因式分解:;
(2)化简:.
17. 先化简,再求值:(2﹣a)(3+a)+(a﹣5)2,其中a=4.
18. 在平面直角坐标系中,△ABC三个顶点的坐标为:A(﹣3,2),B(﹣4,﹣3)C(﹣1,﹣1)
(1)若△A1B1C1与△ABC关于y轴对称,请写出点A1,B1,C1的坐标(直接写答案):A1 ;B1, ;C1 ;
(2)△ABC的面积为 ;
(3)在y轴上画出点P,使PB+PC最小.
19. 如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.
求证:(1)Rt△ABF≌Rt△DCE;
(2)OE=OF.
20. 如图(1)在凸四边形中,.
(1)如图(2),若连接,则的形状是________三角形,你是根据哪个判定定理?
答:______________________________________(请写出定理的具体内容)
(2)如图(3),若在四边形的外部以为一边作等边,并连接.请问:与相等吗?若相等,请加以证明;若不相等,请说明理由.
21. 阅读以下材料
材料:因式分解:
解:将“”看成整体,令,则原式
再将“A”还原,得原式
上述解题用到是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:
(1)因式分解:______;
(2)因式分解:;
22. 某车间有甲乙两个小组,甲组的工作效率比乙组的工作效率高20%,甲组加工2700个零件所用的时间比乙组加工2000个零件所用的时间多半小时,求甲乙两组每小时各加工零件多少个?
23. 数学课上,刘老师出示了如下框中的题目:
小聪与同桌小明讨论后,仍不得其解.刘老师提示道:“数学中常通过把一个问题特殊化来找到解题思路”.两人茅塞顿开,于是进行了如下解答,请你根据他们提供的思路完成下面相应内容:
(1)特殊情况·探索结论
当点E为线段AB的中点时,如图1,确定线段AE与DB的大小关系.请你直接写出结论:AE________DB.(选填“>”,“<”或“=”)
(2)特例启发·解答题目
当E为线段AB上除中点外的任意一点时,其余条件不变,如图2,(1)中线段AE与DB的大小关系会发生改变吗?若不会,请证明;若改变,请说明理由.
(3)拓展结论·设计新题
经过以上的解答,小聪和小明发现如果把刘老师的题目稍加改变,就会得到这样一道题目:在等边中,点E在直线AB上,点D在直线BC上,且.若的边长为1,,求CD的长.
请你根据(1)(2)的探究过程,尝试解决两人改编的此问题,直接写出CD的长.
偃师市2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
解析:A选项,图标不符合轴对称图形的定义,故不符合题意;
B选项,图标不符合轴对称图形的定义,故不符合题意;
C选项,图标符合轴对称图形的定义,故符合题意;
D选项,图标不符合轴对称图形的定义,故不符合题意;
故选:C.
2.【答案】:B
解析:解:0.00007=7×10-5.
故选B.
2.【答案】:A
解析:解:(4a3 12a2b 8a3b2) ÷ (4a2)
.
故选A
4.【答案】:D
解析:解:∵正多边形的一个内角是135°,
∴该正多边形的一个外角为45°,
∵多边形的外角之和为360°,
∴边数=,
∴这个正多边形的边数是8.
故选:D.
5.【答案】:B
解析:如图所示:
由题意得,∠ABD=60°,∠C=45°,
∴∠α=∠ABD−∠C=15°,故B正确.
故选:B.
6.【答案】:D
解析:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC=90,∠ACB=∠ECD,
所以用到的是两角及这两角的夹边对应相等即ASA这一方法.
故选D
7.【答案】:B
解析::①x3+x=x(x2+1),不符合题意;
②x2-2xy+y2=(x-y)2,符合题意;
③a2-a+1不能分解,不符合题意;
④x2-16y2=(x+4y)(x-4y),符合题意,
故选B
8.【答案】:B
解析:解:四边形是长方形,
,
,
由题意可知,平分,
,
,
故选:B.
9.【答案】:B
解析:解:, 故A不符合题意;
不能用公式法分解因式,故B符合题意;
x2 2xy y2, 故C不符合题意;
, 故D不符合题意;
故选:B
10.【答案】:D
解析:是等边三角形,
,
,
,
,
又,
,
,
,
,
在和中,,
,
,
则周长为,
在点D从B运动到C的过程中,BC长不变,AD长先变小后变大,其中当点D运动到BC的中点位置时,AD最小,
在点D从B运动到C的过程中,周长的变化规律是先变小后变大,
故选:D.
二. 填空题
11.【答案】:
解析:解:
故答案为:.
12.【答案】:3
解析:解:∵一个多边形的每个内角都是120°,
∴这个多边形的每个外角都是60°
∴该多边形的边数为:360°÷60°=6,
∴从这个多边形的一个顶点出发可以画对角线条数为:6﹣3=3.
故答案为:3.
13.【答案】:或.
解析:①直角三角形的两边长分别是4cm,3cm,则
第三条边长(cm);
②当直角边为3cm,斜边长为4cm时,第三条边长(cm)
故答案为:或.
14.【答案】: 19cm
解析:解:∵是的垂直平分线,
∴cm,,
∴AC=AE+CE=6(cm),
∵的周长为,
∴(cm),
∴(cm),即(cm),
∴(cm);
∴的周长为19cm;
故答案为:19cm.
15.【答案】: 16
解析:由题意可得:
[2☆(﹣4)]☆1
=2﹣4☆1
=☆1
=()﹣1
=16,
故答案为16.
三.解答题
16【答案】:
(1);
(2)
解析:
解:(1)原式=
;
(2)原式=
.
17【答案】:
﹣11a+31,-13.
解析:
解:(2﹣a)(3+a)+(a﹣5)2
=6+2a﹣3a﹣a2+a2﹣10a+25
=﹣11a+31,
当a=4时,原式=﹣11×4+31=﹣44+31=﹣13.
18【答案】:
(1)(3,2)、(4,﹣3)、(1,﹣1);(2)6.5;(3)见解析.
解析:
(1)根据点关于y轴对称的性质得:;
(2)如图可知,
则;
(3)由题意可得y轴是线段的垂直平分线,则
因此
由三角形的三边关系得
故当三点共线时,最小,且最小值为
连接,与y轴的交点即为所求点P(如图所示).
19【答案】:
(1)见解析;(2)见解析
解析:
证明:(1)∵BE=CF,
∴BE+EF=CF+EF,即BF=CE,
∵∠A=∠D=90°,
∴△ABF与△DCE都为直角三角形,
在Rt△ABF和Rt△DCE中
∵,
∴Rt△ABF≌Rt△DCE(HL);
(2)∵Rt△ABF≌Rt△DCE(已证),
∴∠AFB=∠DEC,
∴OE=OF.
20【答案】:
(1)等边三角形;一个内角为60°的等腰三角形是等边三角形;
(2),理由见解析.
解析:
解:(1)连接,
在中,
,
是等腰三角形,
又
是等边三角形(一个内角为60°的等腰三角形是等边三角形)
故答案为:等边三角形;一个内角为60°的等腰三角形是等边三角形;
(2),理由如下:
是等边三角形,
又是等边三角形,
,
即
.
21【答案】:
(1)
(2)
解析:
【小问1解析】
解:
=
=;
故答案为:;
【小问2解析】
设,
原式,
将A还原,则原式;
22【答案】:
甲每小时加工600个零件,乙每小时加工500个零件
解析:
解:设乙组每小时加工的零件数为x个,则甲组每小时加工零件数为
(1+20%)x个.根据题意得:
=+,
解得:x=500,
经检验,x=500是原方程的解,
(1+20%)x=600,
答:甲每小时加工600个零件,乙每小时加工500个零件.
23【答案】:
(1)=
(2)不会改变,仍有.见解析
(3)3或1
解析:
【小问1解析】
解:∵△ABC为等边三角形,E为AB的中点,
∴∠BCE=30°,∠ABC=60°,AE=BE,
∵DE=CE,
∴∠D=∠BCE=30°,
∵∠ABC=∠D+∠BED,
∴∠BED=30°,
∴∠D=∠BED,
∴DB=BE=AE;
故答案为:=
【小问2解析】
解:不会改变,仍有.证明如下:
如图,过点E作EF∥BC,交AC于点F.
∵是等边三角形,
∴,.
∵EF∥BC,
∴,.
∴,
∴是等边三角形.
∴.
∴,即.
∵,
∴.
∵,,
∴,
在和中,
,
∴(SAS),
∴.
∵,
∴.
【小问3解析】
解:如图,若点E在AB的延长线上,点D在CB的延长线上,
∵△ABC是等边三角形,
∴AB=AC=BC=1,∠ABC=∠ACB=60°,
∵AE=2,
∴AB=BC=BE=1,
∵∠ABC=∠BEC+∠BCE,
∴∠BEC=∠BCE=30°,
∴∠ACE=90°,
∴△ACE是直角三角形,
∵DE=CE,
∴∠D=∠BCE=30°,
∵∠DBE=∠ABC=60°,
∴∠DEB=180°-30°-60°=90°,即△DEB是直角三角形.
∴BD=2BE=2
∴CD=BD+BC=1+2=3;
如图,若点E在BA的延长线上,点D在BC的延长线上,过点E作EM⊥BD于点M,
∵△ABC等边三角形,
∴AB=AC=BC=1,∠ABC=∠ACB=60°,
∴∠BEM=30°,
∴BE=2BM,
∵AE=2,
∴BE=3,
∴,
∴CM=BM-BC=0.5,
∵CE=DE,
∴CD=2CM=1;
如图,若点E在AB的延长线上,点D在BC的延长线上,
∵△ABC是等边三角形,
∴AB=AC=BC=1,∠ABC=∠ACB=60°,
∴∠CBE=120°,
∵AE=2,
∴AB=BC=BE=1,
∵∠ABC=∠BEC+∠BCE,
∴∠BEC=∠BCE=30°,
∴∠ECD=∠BEC+∠CBE=150°,
∵CE=DE,
∴∠D=∠ECD=150°,不符合三角形内角和定理,,舍去;
如图,若点E在BA的延长线上,点D在CB的延长线上,则∠EDC<∠ABC,∠ECB>∠ACB,
∵∠EDC<∠ABC,∠ECB>∠ACB,且∠ABC=∠ACB=60°,
∴∠EDC<∠DCE,
∴DE≠CE,不合题意,舍去;
综上所述,CD的长为3或1.
如图,在等边中,E为线段AB上一点,D为线段CB延长线上一点,且,试确定AE与DB的大小关系,并说明理由.
2023-2024学年河南省洛阳市偃师市七年级(上)期末数学试卷(含解析): 这是一份2023-2024学年河南省洛阳市偃师市七年级(上)期末数学试卷(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省洛阳市偃师市2022-2023学年七年级上学期期末模拟测试数学试卷(含解析): 这是一份河南省洛阳市偃师市2022-2023学年七年级上学期期末模拟测试数学试卷(含解析),共13页。试卷主要包含了选择题等内容,欢迎下载使用。
2022-2023学年河南省洛阳市偃师市中成外国语学校八年级(下)期末数学试卷(含解析): 这是一份2022-2023学年河南省洛阳市偃师市中成外国语学校八年级(下)期末数学试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。