2023-2024学年湖北省孝感市孝南区部分学校八年级数学第一学期期末联考模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.若点、在直线上,且,则该直线所经过的象限是( )
A.第一、二、三象限B.第一、二、四象限
C.第二、三、四象限D.第四象限
2.如图,AB∥CD,∠A+∠E=75º,则∠C为( )
A.60 º B.65 º C.75 º D.80 º
3.计算的结果是( )
A.B.-4C.D.
4.若x= -1.则下列分式值为0的是( )
A.B.C.D.
5.在下列四个图案中,是轴对称图形的是( )
A.B.C.D.
6.要使的积中不含有的一次项,则等于( )
A.-4B.-3C.3D.4
7.若一个三角形的两边长分别为3和7,则第三边长可能是( )
A.6B.3C.2D.11
8.如图是4×4正方形网格,已有3个小方格涂成了黑色.现要从其余白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有( )个.
A.5B.4C.3D.2
9.如图,是一高为2m,宽为1.5m的门框,李师傳有3块薄木板,尺寸如下:①号木板长3m,宽2.7m;②号木板长2.8m,宽2.8m;③号木板长4m,宽2.4m.可以从这扇门通过的木板是( )
A.①号B.②号C.③号D.均不能通过
10.当 a>0 时,下列关于幂的运算正确的是( )
A.a0=1B.a﹣1=﹣aC.(﹣a)2=﹣a2D.(a2)3=a5
11.下列图形中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
12.下列四组数据中,能作为直角三角形三边长的是( )
A.1,2,3B.,3,C.,,D.0.3,0.4,0.5
二、填空题(每题4分,共24分)
13.若,则________.
14.若,,为正整数,则___________.
15.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,设原来每天生产汽车辆,则列出的不等式为________.
16.的值是________;的立方根是____________.
17.分解因式2m2﹣32=_____.
18.如图,是等边三角形,AB=6,AD是BC边上的中线.点E在AC边上,且,则ED的长为____________.
三、解答题(共78分)
19.(8分)小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:
(1)小强去学校时下坡路长 千米;
(2)小强下坡的速度为 千米/分钟;
(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是 分钟.
20.(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(﹣3,0),B(﹣3,﹣3),C(﹣1,﹣3).
(1)在图中作出△ABC关于x轴对称的图形△DEF;
(2)求线段DF的长.
21.(8分)在平面直角坐标系xOy中,点A(t﹣1,1)与点B关于过点(t,0)且垂直于x轴的直线对称.
(1)以AB为底边作等腰三角形ABC,
①当t=2时,点B的坐标为 ;
②当t=0.5且直线AC经过原点O时,点C与x轴的距离为 ;
③若上所有点到y轴的距离都不小于1,则t的取值范围是 .
(2)以AB为斜边作等腰直角三角形ABD,直线m过点(0,b)且与x轴平行,若直线m上存在点P,上存在点K,满足PK=1,直接写出b的取值范围.
22.(10分)如图,在四边形中,,,,分别以点为圆心,大于的长为半径作弧,两弧交于点,作射线交于点,交于点.若点是的中点.
(1)求证:;
(2)求的长.
23.(10分)精准扶贫,助力苹果产业大发展.甲、乙两超市为响应党中央将消除贫困和实现共同富裕作为重要的奋斗目标,到种植苹果的贫困山区分别用元以相同的进价购进质量相同的苹果.甲超市的销售方案:将苹果按大小分类包装销售,其中大苹果千克,以进价的倍价格销售,剩下的小苹果以高于进价的销售.乙超市的销售方案:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利元(包含人工工资和运费).
(1)苹果进价为每千克多少元?
(2)乙超市获利多少元?并比较哪种销售方式更合算.
24.(10分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长半径画弧,两弧交于点P,作射线AP,交边BC于点D,若CD=4,AB=15,则△ABD的面积是__________.
25.(12分)已知与成正比例,且当时,.
(1)求与的函数表达式;
(2)当时,求的取值范围.
26.(12分)今年清明节前后某茶叶销售商在青山茶厂先后购进两批茶叶.第一批茶叶进货用了5.4万元,进货单价为a元/千克.购回后该销售商将茶叶分类包装出售,把其中300千克精装品以进货单件的两倍出售;余下的简装品以150元/千克的价格出售,全部卖出.第二批进货用了5万元,这一次的进货单价每千克比第一批少了20元.购回分类包装后精装品占总质量的一半,以200元/千克的单价出售;余下的简装品在这批进货单价的基础上每千克加价40元后全部卖出.若其它成本不计,第二批茶叶获得的毛利润是3.5万元.
(1)用含a的代数式表示第一批茶叶的毛利润;
(2)求第一批茶叶中精装品每千克售价.(总售价-总进价=毛利润)
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、D
4、C
5、C
6、D
7、A
8、A
9、C
10、A
11、D
12、D
二、填空题(每题4分,共24分)
13、
14、1
15、
16、4 2
17、2(m+4)(m﹣4)
18、1
三、解答题(共78分)
19、(1)2(2)0.5(3)1
20、(1)见解析;(2)
21、(1)①(3,1);② 1;③ 或 ;(2)当点D在AB上方时,若直线m上存在点P,上存在点K,满足PK=1,则;当点D在AB下方时,若直线m上存在点P,上存在点K,满足PK=1,则.或
22、(1)详见解析;(2)
23、(1)10(2)165000;将苹果按大小分类包装销售更合算.
24、1
25、(1)y=2x-4;(2)-6<y<1.
26、(1)600a+-99000;(2)240元
2023-2024学年湖北省孝感市孝南区十校联谊数学九上期末教学质量检测模拟试题含答案: 这是一份2023-2024学年湖北省孝感市孝南区十校联谊数学九上期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,方程x,已点A等内容,欢迎下载使用。
湖北省孝感市孝南区2023-2024学年数学九上期末考试模拟试题含答案: 这是一份湖北省孝感市孝南区2023-2024学年数学九上期末考试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列方程是一元二次方程的是等内容,欢迎下载使用。
湖北省孝感市孝南区部分学校2023-2024学年九年级数学第一学期期末经典模拟试题含答案: 这是一份湖北省孝感市孝南区部分学校2023-2024学年九年级数学第一学期期末经典模拟试题含答案,共8页。试卷主要包含了下列事件中为必然事件的是,下列图形中不是中心对称图形的是等内容,欢迎下载使用。