2023-2024学年人教版九年级上册+数学期末试题
展开姓名: 得分: 日期:
一、选择题(本大题共 8 小题)
1、下列事件是必然事件的是( )
2、下列手机手势解锁图案中,是中心对称图形的是( )
3、九一(1)班在参加学校4×100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为( )
4、在平面直角坐标系中,点P(-1,2)关于原点的对称点的坐标为( )
5、在一次篮球联赛中,每个小组的各队都要与同组的其他队比赛两场,然后决定小组出线的球队.如果某一小组共有x个队,该小组共赛了90场,那么列出正确的方程是( )
6、已知m=2b+2,n=b2+3 ,则m和n的大小关系中正确的是( )
7、如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35∘ ,∠P的度数为( )
8、已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:
下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有( )
二、填空题(本大题共 7 小题)
9、《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木柱根部8尺处时绳索用尽.问绳索长是多少?设绳索长为x尺,可列方程为_________.
10、如图,正五边形ABCDE内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=________ ∘ .
11、某班学生分组做抛掷瓶盖实验,各组实验结果如下表:
根据表中的信息,估计掷一枚这样的瓶盖,落地后盖面朝上的概率为________.(精确到0.01)
12、如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=______度.
13、出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,则当x=_____元,一天出售该种手工艺品的总利润y最大.
14、如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF=______.
15、正Δ ABC在正方形EFGH, 顶点A与E重合,点B在EF上.将正Δ ABC沿正方形EFGH的内壁作无滑动的滚动.已知正Δ ABC边长为1, 正方形EFGH边长为2, 当滚动一周回到原位置时, 点C运动的路径长为 .
三、解答题(本大题共 8 小题)
16、解方程:4(3x-2)(x+1)=3x+3.
17、已知关于x的方程 x2−(2k−1)x+k2=0
(1)若原方程有实数根,求k的取值范围?
(2)选取一个你喜欢的非零整数值作为k的值,使原方程有实数根,并解方程.
18、水果种植大户小芳组织了“草莓采摘游”活动,为了吸引更多的顾客,每一位来采摘草莓的顾客都有一次抽奖机会.现有一只不透明的盒子,盒子里有三个外形与质地完全相同的球,分别印有A(草莓),B(枇杷),C(葡萄).
(1)抽奖活动1:若顾客从盒子中任意摸一个球,摸到草莓就获得一张50元的优惠券,请问顾客获得50元的优惠券的概率;
(2)抽奖活动2:若顾客从盒子中任意摸一个球后放回盒子,摇匀后再摸一个,两次摸到的球都是草莓就可获得一张100元的优惠券,请列出顾客摸到球的所有可能情况,并求出获得100元的优惠券的概率是多少?
19、如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0⩽t⩽6) ,那么
(1)设△POQ 的面积为y,求y关于t的函数解析式;
(2)当△POQ 的面积最大时,将△POQ 沿直线PQ翻折后得到△PCQ ,试判断点C是否落在直线AB上,并说明理由;
20、某商店销售一款口罩,每袋的进价为12元.经市场调查发现,每袋售价每增加1元,日均销售量减少5袋.当售价为每袋18元时,日均销售量为100袋.设口罩每袋的售价为x元,日均销售量为y袋.
(1)用含x的代数式表示y.
(2)物价部门规定,该款口罩的每袋售价不得高于22元.当每袋售价定为多少元时,商店销售该款口罩所得的日均毛利润为720元?
21、如图,AB是⊙O的弦,半径OC⊥AB交AB于点D,点P是⊙O上AB上方的一个动点(P不与A、B重合),已知∠APB=60°,∠OCB=2∠BCM.
(1)设∠A=α,当圆心O在∠APB内部时,写出α的取值范围;
(2)求证:CM是⊙O的切线;
(3)若OC=4,PB=42 ,求PC的长.
22、如图,矩形ABCD中,AB=6,BC=8,再沿EF折叠,使得D点与B点重合,C点的对应点为G.
(1)求折痕EF的长;
(2)将△BEF绕点B顺时针旋转,旋转角为α(0°<α<180°),记旋转过程中的三角形为△BE′F′,在旋转过程中设直线E′F′与射线EF、射线ED分别相交于点M、N,当EN=MN时,求FM的长.
23、如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)若M为对称轴上的点,且△MAB 的面积是4,求M点的坐标;
(3)设抛物线的顶点为D,在第一象限的抛物线上是否存在点N,使得△NCD 是等腰三角形?若存在,求出符合条件的N点的坐标;若不存在,请说明理由.
A.明天太阳从西边升起
B.掷出一枚硬币,正面朝上
C.打开电视机,正在播放2018俄罗斯世界杯足球赛
D.任意画一个三角形,它的内角和为180°
A.
B.
C.
D.
A.1
B.12
C.13
D.14
A.(-1,-2)
B.(1,-2)
C.(2,-1)
D.(-2,1)
A. 12x(x−1)=90
B. x(x-1)=90
C. x(x−1)=902
D. x(x+1)=90
A. m > n
B. m⩾n
C. m < n
D. m⩽n
A. 35∘
B. 45∘
C. 60∘
D. 70∘
x
-1
0
1
3
y
-3
1
3
1
A.1个
B.2个
C.3个
D.4个
累计抛掷次数
100
200
300
400
500
盖面朝上次数
54
105
158
212
264
盖面朝上频率
0.5400
0.5250
0.5267
0.5300
0.5280
浙教版2023-2024学年数学九年级上册 期末培优试题: 这是一份浙教版2023-2024学年数学九年级上册 期末培优试题,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
人教版2023-2024学年数学九年级上册期末综合提高卷: 这是一份人教版2023-2024学年数学九年级上册期末综合提高卷,共3页。试卷主要包含了单选题,填空题,计算题,解答题等内容,欢迎下载使用。
人教版2023-2024学年数学九年级上册 期末综合复习试题: 这是一份人教版2023-2024学年数学九年级上册 期末综合复习试题,共6页。试卷主要包含了单选题,填空题,计算题,作图题,解答题等内容,欢迎下载使用。