|试卷下载
搜索
    上传资料 赚现金
    【课时练】(湘教版) 2023-2024学年初中数学八年级上册 1.3 整数指数幂 同步分层训练培优卷
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      【课时练】(湘教版) 2023-2024学年初中数学八年级上册 1.3 整数指数幂 同步分层训练培优卷(教师版).docx
    • 学生
      【课时练】(湘教版) 2023-2024学年初中数学八年级上册 1.3 整数指数幂 同步分层训练培优卷(学生版).docx
    【课时练】(湘教版) 2023-2024学年初中数学八年级上册 1.3 整数指数幂 同步分层训练培优卷01
    【课时练】(湘教版) 2023-2024学年初中数学八年级上册 1.3 整数指数幂 同步分层训练培优卷02
    【课时练】(湘教版) 2023-2024学年初中数学八年级上册 1.3 整数指数幂 同步分层训练培优卷03
    【课时练】(湘教版) 2023-2024学年初中数学八年级上册 1.3 整数指数幂 同步分层训练培优卷01
    【课时练】(湘教版) 2023-2024学年初中数学八年级上册 1.3 整数指数幂 同步分层训练培优卷02
    【课时练】(湘教版) 2023-2024学年初中数学八年级上册 1.3 整数指数幂 同步分层训练培优卷03
    还剩5页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湘教版八年级上册1.3.3整数指数幂的运算法则精品测试题

    展开
    这是一份湘教版八年级上册1.3.3整数指数幂的运算法则精品测试题,文件包含课时练湘教版2023-2024学年初中数学八年级上册13整数指数幂同步分层训练培优卷教师版docx、课时练湘教版2023-2024学年初中数学八年级上册13整数指数幂同步分层训练培优卷学生版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。

    一、选择题
    1.(2023七下·北仑期末)下列运算正确的是( )
    A.a6⋅a3=a9B.a6+a3=a9C.(a6)3=a9D.a6÷a3=a2
    【答案】A
    【知识点】同底数幂的乘法;同底数幂的除法;同类项;幂的乘方
    【解析】【解答】解:A、a6·a3=a9,故正确;
    B、a6与a3不是同类项,不能合并,故错误;
    C、(a6)3=a18,故错误;
    D、a6÷a3=a3,故错误.
    故答案为:A.
    【分析】同底数幂相乘,底数不变,指数相加,据此判断A;根据同类项是字母相同且相同字母的指数也相同 的项可判断B;幂的乘方,底数不变,指数相乘,据此判断C;同底数幂相除,底数不变,指数相减,据此判断D.
    2.(2023七下·沭阳期中)墨迹覆盖了等式“a3?a3=2a3(a≠0) ”中的运算符号,则覆盖的是( )
    A.+B.−C.×D.÷
    【答案】A
    【知识点】同底数幂的乘法;同底数幂的除法;合并同类项法则及应用
    【解析】【解答】解:a3+a3=2a3,a3-a3=0,a3·a3=a6,a3÷a3=a0=1.
    故答案为:A.
    【分析】同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;合并同类项法则:同类项的系数相加减,所得的结果作为系数,字母和字母的指数不变,据此解答.
    3.(2023·龙岗模拟)下列运算错误的是( )
    A.(−a)4=a4B.−a+3a=2aC.(2a2)3=6a5D.a6÷a2=a4
    【答案】C
    【知识点】同底数幂的除法;合并同类项法则及应用;幂的乘方
    【解析】【解答】A.根据幂的乘方法则(底数不变,指数相乘),(−a)4=a4 ,A不符合题意;
    B.根据合并同类项法则, −a+3a=2a ,B不符合题意;
    C.根据幂的乘方法则和积的乘方法则(把积的每一个因式分别乘方,再把所得的幂相乘), (2a2)3=8a6,C符合题意;
    D.根据同底数幂除法法则(底数不变,指数相减), a6÷a2=a4,D不符合题意;
    故答案为:C。
    【分析】根据幂的乘方、合并同类项、积的乘方及同底数幂除法的法则进行分析。
    4.(2023九下·盐都月考)下列计算中,结果与a3·a5相等的是( )
    A.a4+a4B.(a3)5C.a9÷aD.a9-a
    【答案】C
    【知识点】同底数幂的乘法;同底数幂的除法;合并同类项法则及应用;幂的乘方
    【解析】【解答】解:a3⋅a5=a8
    A. a4+a4=2a4,不符合题意;
    B.(a3)5=a15,不符合题意;
    C.a9÷a=a8,符合题意;
    D.a9 与a不是同类项,不能合并,不符合题意.
    故答案为:C.
    【分析】同底数幂相乘,底数不变,指数相加,则a3·a5=a8,合并同类项法则:同类项的系数相加减,所得的结果作为系数,字母和字母的指数不变,据此可求出A式子的结果,幂的乘方,底数不变,指数相乘,据此求出B中式子的结果,同底数幂相除,底数不变,指数相减,求出C中式子的结果,据此判断.
    5.(2023·来安模拟)下列算式中,结果等于4a4的是( )
    A.2a2+2a2B.3a2⋅a2C.a5÷4aD.(−2a2)2
    【答案】D
    【知识点】同底数幂的乘法;同底数幂的除法;合并同类项法则及应用;积的乘方;幂的乘方
    【解析】【解答】解:A中2a2+2a2=4a2≠4a4,故不符合要求;
    B中3a2⋅a2=3a4≠4a4,故不符合要求;
    C中a5÷4a=14a4≠4a4,故不符合要求;
    D中(−2a2)2=4a4,故符合要求;
    故答案为:D.
    【分析】利用同类项的定义,同底数幂的乘除法则,幂的乘方,积的乘方法则计算求解即可。
    6.(2023七下·杭州期中)下列说法中:①若am=6,an=3,则am−n=2;②两条直线被第三条直线所截,一组内错角的角平分线互相平行;③若(t−2)2t=1,则t=3或t=0;④已知二元一次方程组x+y=6ax+y=4的解也是二元一次方程x−3y=−2的解,则a的值是0.5;其中正确的是( )
    A.①②B.②③C.①④D.③④
    【答案】C
    【知识点】同底数幂的除法;零指数幂;二元一次方程组的解;平行线的判定与性质;加减消元法解二元一次方程组
    【解析】【解答】解:①∵am=6,an=3,∴am-n=am÷an=6÷3=2,故此小题正确;
    ②如图,当AB∥CD时,
    ∵AB∥CD,
    ∴∠CMP=∠BPM,
    ∵PQ平分∠BPM,MN平分∠CMP,
    ∴∠QPM=12∠BPM,∠NMP=12∠CMP,
    ∴∠QPM=∠NMP,
    ∴MN∥PQ;
    当AB不平行CD时,∠CMP≠∠BPM,当然∠QPM≠∠NMP,当然MN就不平行PQ,故此小题错误;
    ③∵(t-2)2t=1,∴2t=0或t-2=±1,解得:t=0或3或1,故此小题错误;
    ④∵x+y=6ax+y=4的解也是二元一次方程x-3y=-2的解,
    ∴x+y=6x-3y=-2的解也是ax+y=4的解,
    解x+y=6x-3y=-2
    得x=4y=2,
    ∴x=4y=2是ax+y=4的解,
    ∴4a+2=4,
    解得a=0.5,故此小题正确,
    综上正确的有①④.
    故答案为:C.
    【分析】根据同底数幂的除法法则的逆用可判断①小题,根据平行线的性质及判断可判断②小题;根据0指数幂性质(任何一个不为0的数的0次幂都等于1),有理数的乘方运算法则(1的任何次幂都等于1,-1的偶数次幂等于1)可判断③;根据方程组的解可判断④.
    二、填空题
    7.(2023七下·宿迁期中)若2m=3,8n=5,则2m−3n= .
    【答案】35
    【知识点】同底数幂的除法;幂的乘方
    【解析】【解答】解:∵2m=3,8n=5,
    ∴2m-3n=2m÷(23)n=3÷5=35.
    故答案为:35.
    【分析】根据同底数幂的除法法则以及幂的乘方法则可得2m-3n=2m÷(23)n,然后将已知条件代入进行计算.
    8.(2023七下·大田期中)已知2a=3,2b=6,2c=12,现给出a,b,c之间的四个关系式:①a+c=2b;②a+b=2c−3;③b+c=2a+2;④b=a+2.其中正确的关系式是 .(填序号).
    【答案】①②
    【知识点】同底数幂的乘法;同底数幂的除法;幂的乘方
    【解析】【解答】解:∵2a×2c=2a+c=3×12=36,(2b)2=62,22b=36,
    ∴2a+c=22b,
    ∴a+c=2b,故①正确,
    ∵2a×2b=2a+b=3×6=18,(2c)2÷23=22c−3=122÷8=18,
    ∴2a+b=22c−3,
    ∴a+b=2c−3,故②正确;
    ∵2b×2c=2b+c=6×12=72,(2a)2×23=22a+3=72,
    ∴2b+c=22a+3,
    ∴b+c=2a+3.故③错误;
    ∵2a×22=aa+2=3×4=12,2b=6,
    ∴2a+2≠2b,则b≠a+2,故④错误.
    ∴正确的有①②选项.
    故答案为:①②.
    【分析】根据同底数幂的乘法法则可得2a×2c=2a+c=36,由幂的乘方法则可得(2b)2=22b=36,据此判断①;根据幂的乘方法则以及同底数幂的除法法则可得(2c)2÷23=22c-3=18,据此判断②;根据同底数幂的乘法法则以及幂的乘方法则可得2b×2c=2b+c=72,22a+3=(2a)2×23=72,据此判断③;根据同底数幂的乘法法则可得2a+2=2a×22=12,据此判断④.
    9.(2023七下·瓯海期中)已知am=4,an=8,则a2m−n的值为 .
    【答案】2
    【知识点】同底数幂的除法;幂的乘方
    【解析】【解答】解:∵am=4,an=8,
    ∴a2m−n=a2m÷an=(am)2÷an=42÷8=2,
    故答案为:2.
    【分析】根据同底数幂的除法法则以及幂的乘方法则可得a2m-n=(am)2÷an,然后将已知条件代入进行计算.
    10.(2019七下·新吴期中)已知 (x−2)x2−4 = 1,则 x =( )
    【答案】-2或3
    【知识点】零指数幂;有理数的乘方
    【解析】【解答】∵(x−2)x2−4 =1
    ∴x2 -4=0,且x-2 ≠ 0;或x-2=1
    ∴x=-2或3.
    【分析】①根据0指数的意义,任何一个非0数的0次幂等于1,②根据1的任何次幂都等于1,③再根据-1的偶数次幂等于1,三种情况来考虑分别列出方程并检验即可。
    三、解答题
    11.(2022七下·合肥期末)已知2a=3,2b=9,2c=12,求a+c−b的值.
    【答案】解:∵2a=3,2b=9,2c=12,
    ∴2a⋅2c÷2b=3×12÷9=4,
    ∴2a+c−b=22,
    ∴a+c−b=2.
    【知识点】代数式求值;同底数幂的乘法;同底数幂的除法
    【解析】【分析】利用同底数幂的乘除法则求出 2a+c−b=22,再求解即可。
    12.(2021七下·绍兴月考)若 5x−3y+2=0 ,求 (102x)3÷(10x⋅103y) 的值.
    【答案】解:∵5x−3y+2=0 ,
    ∴5x-3y=-2,
    ∴(102x)3÷(10x⋅103y)
    =106x÷10x+3y
    =106x-x-3y
    =105x-3y
    =10-2
    =1100.
    【知识点】同底数幂的乘法;同底数幂的除法
    【解析】【分析】 首先利用幂的乘方法则,以及同底数的幂的乘法计算,再用同底数的幂的除法法则计算,最后把已知的式子代入求解.
    四、综合题
    13.(2023七下·佛冈期中)
    (1)已知3m=8,3n=2,求32m−3n+1的值;
    (2)已知x2+x−1=0,求x2+1x2的值.
    【答案】(1)解:∵3m=8 , 3n=2
    ∴32m−3n+1=32m÷33n×3
    =(3m)2÷(3n)3×3
    =82÷23×3
    =24;
    (2)解:∵x2+x−1=0
    ∴x≠0
    ∴x+1−1x=0
    即 x−1x=−1
    ∴(x−1x)2=1
    x2−2+1x2=1
    ∴x2+1x2=3 .
    【知识点】同底数幂的乘法;同底数幂的除法;完全平方公式及运用;幂的乘方
    【解析】【分析】(1)根据幂的乘方法则以及同底数幂的乘除法法则可得32m-3n+1=(3m)2÷(3n)3×3,然后将已知条件代入进行计算;
    (2)给已知条件两边同时除以x可得x-1x=-1,给两边同时平方可得x2+1x2-2=1,据此不难得到x2+1x2的值.
    14.(2018七下·余姚期末)如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形
    (1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为 .(只要写出一个即可)
    (2)请利用(1)中的等式解答下列问题:
    ①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值
    ②若三个实数x,y,z满足2x×4y÷8z= 14 ,x2+4y2+9z2=44,求2xy-3xz-6yz的值
    【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
    (2)解:①∵(a+b+c) 2=a2+b2+c2+2ab+2bc+2ac
    且a+b+c=11, ab+bc+ac=38
    ∴a2+b2+c2=(a+b+c)2-2(ab+bc+ac)
    =112-2×38
    =45
    ②∵2x×4y÷8z= 14
    2x×22y÷23z=2-2
    ∴2x+2y-3z=2-2
    ∴x+2y-3z=-2
    ∵(x+2y-3z)2=x2+4y2+9z2+2(2xy-3xz-6yz)
    ∴(-2) 2=44+2(2xy-3xz-6yz)
    ∴2xy-3xz-6yz=-20
    【知识点】同底数幂的乘法;同底数幂的除法;完全平方公式及运用;完全平方公式的几何背景
    【解析】【分析】(1)根据边长为(a+b+c)的正方形面积=边长为a的正方形的面积+边长为b的正方形的面积+边长为c的正方形的面积之和,再加上边长分别为a、b的长方形的面积+边长分别为a、c的长方形的面积+边长分别为c、b的长方形的面积,列式计算即可。
    (2)①将(1)中的结论转化为a2+b2+c2=(a+b+c)2-2(ab+bc+ac),再整体代入求值;②利用幂的运算性质,将 2x×4y÷8z= 14转化为 x+2y-3z=-2,再利用完全平方公式可得到(x+2y-3z)2=x2+4y2+9z2+2(2xy-3xz-6yz),再整体代入计算可求出2xy-3xz-6yz的值。
    15.(2019七下·淮安月考)
    (1)你发现了吗? (23)2=23×23 , (23)−2=1(23)2=123×123=32×32 ,由上述计算,我们发; (23)−2 (32)−2
    (2)请你通过计算,判断 (54)3 与 (45)−3 之间的关系;
    (3)我们可以发现: (ba)−m (ab)m (ab≠0)
    (4)利用以上的发现计算: (715)−3×(75)4 .
    【答案】(1)>
    (2)解:计算得 (54)3=12564 , (45)-3=12564
    ∴(54)3=(45)-3
    (3)=
    (4)解:利用以上的发现计算: (715)-3×(75)4 = (157)3×(75)4= (157)3×(75)3×(75)=1895
    【知识点】同底数幂的乘法;负整数指数幂;探索数与式的规律;积的乘方
    【解析】【分析】(1)类比题干中乘方的运算即可得;(2)类比题干中分数的乘方计算方法计算后即可得;(3)根据(1)、(2)的规律即可得;(4)逆用积的乘方将原式变形为 (715)-3×(75)4 = (157)3×(75)4 ,再利用同底数幂进行计算可得
    相关试卷

    初中数学湘教版八年级上册第3章 实数3.3 实数优秀同步达标检测题: 这是一份初中数学湘教版八年级上册第3章 实数3.3 实数优秀同步达标检测题,文件包含课时练湘教版2023-2024学年初中数学八年级上册33实数同步分层训练培优卷教师版docx、课时练湘教版2023-2024学年初中数学八年级上册33实数同步分层训练培优卷学生版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

    湘教版八年级上册1.3.3整数指数幂的运算法则精品课堂检测: 这是一份湘教版八年级上册1.3.3整数指数幂的运算法则精品课堂检测,文件包含课时练湘教版2023-2024学年初中数学八年级上册133整数指数幂的运算法则同步分层训练培优卷教师版docx、课时练湘教版2023-2024学年初中数学八年级上册133整数指数幂的运算法则同步分层训练培优卷学生版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。

    湘教版八年级上册1.3.2零次幂和负整数指数幂精品复习练习题: 这是一份湘教版八年级上册1.3.2零次幂和负整数指数幂精品复习练习题,文件包含课时练湘教版2023-2024学年初中数学八年级上册132零次幂和负整数指数幂同步分层训练培优卷教师版docx、课时练湘教版2023-2024学年初中数学八年级上册132零次幂和负整数指数幂同步分层训练培优卷学生版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【课时练】(湘教版) 2023-2024学年初中数学八年级上册 1.3 整数指数幂 同步分层训练培优卷
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map