|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省苏州市2022-2023学年 七年级下数学第二次月考模拟卷(一)
    立即下载
    加入资料篮
    江苏省苏州市2022-2023学年 七年级下数学第二次月考模拟卷(一)01
    江苏省苏州市2022-2023学年 七年级下数学第二次月考模拟卷(一)02
    江苏省苏州市2022-2023学年 七年级下数学第二次月考模拟卷(一)03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省苏州市2022-2023学年 七年级下数学第二次月考模拟卷(一)

    展开
    这是一份江苏省苏州市2022-2023学年 七年级下数学第二次月考模拟卷(一),共25页。试卷主要包含了下列运算正确的是,下列命题中共有几个真命题,观察等内容,欢迎下载使用。

    一.选择题(共8小题)
    1.下列运算正确的是( )
    A.3ab﹣ab=3B.(a+b)2=a2+b2
    C.a÷a﹣1=1(a≠0)D.(﹣3a2b)2=9a4b2
    2.若m>n,下列不等式一定成立的是( )
    A.m﹣2>n+2B.2m>2nC.−m2>n2D.m2>n2
    3.学习平行线的性质后,老师给小明出了一道题:如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是多少度?请你帮小明求出( )
    A.120°B.130°C.140°D.150°
    4.若多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个一次因式2x﹣3,则a的值为( )
    A.1B.5C.﹣1D.﹣5
    5.下列命题中共有几个真命题( )
    ①各边相等的两个多边形一定全等;
    ②三角形的三个内角中至少有两个锐角;
    ③三角形的内角大于它的外角;
    ④同旁内角互补.
    A.1个B.2个C.3个D.4个
    6.根据下列条件不能画出唯一△ABC的是( )
    A.AB=5,BC=6,AC=7B.AB=5,BC=6,∠B=45°
    C.AB=5,AC=4,∠C=90°D.AB=3,AC=4,∠C=5°
    7.观察:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,据此规律,当(x﹣1)(x5+x4+x3+x2+x+1)=0时,代数式x2021﹣1的值为( )
    A.1B.0C.1或﹣1D.0或﹣2
    8.如图,△OAB为等腰直角三角形(∠A=∠B=45°,∠AOB=90°),△OCD为等边三角形(∠C=∠D=∠COD=60°),满足OC>OA,△OCD绕点O从射线OC与射线OA重合的位置开始,逆时针旋转,旋转的角度为α(0°<α<360°),下列说法正确的有( )个
    ①当α=15°时,DC∥AB;②当OC⊥AB时,α=45°;③当边OB与边OD在同一直线上时,直线DC与直线AB相交形成的锐角为15°;④整个旋转过程,共有10个位置使得△OAB与△OCD有一条边平行
    A.1B.2C.3D.4
    二.填空题(共8小题)
    9.请写出“等腰三角形的两底角相等”的逆命题: .
    10.若am=8,an=2,则am﹣n= .
    11.已知x=2﹣t,y=3t﹣1,用含x的代数式表示y,可得y= .
    12.一元一次不等式的解集在数轴上如图表示,该不等式有两个负整数解,则a的取值范围是 .
    13.如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于28”为一次运算.若运算进行了3次才停止,则x的取值范围是 .
    14.如图,在△ACD中,∠CAD=90°,AC=6,AD=8,AB∥CD,E是CD上一点,BE交AD于点F,若EF=BF,则图中阴影部分的面积为 .
    15.若m2=n+2021,n2=m+2021(m≠n),那么代数式m3﹣2mn+n3的值 .
    16.如图,任意画一个∠BAC=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AD=AE;④PD=PE;⑤BD+CE=BC;其中正确的结论为 .(填写序号)
    三.解答题(共9小题)
    17.计算:
    (1)计算−12022+(π−3)0+(12)−1;
    (2)(﹣a)3•a2+(2a4)2÷a3.
    18.分解因式:
    (1)6x2﹣9xy+3x;
    (2)xy2﹣x.
    19.(1)解方程组x+2y=42x+3y=1;
    (2)解不等式组3(x−1)<5x+12x−4≤x−12,并写出它的最大整数解.
    20.先化简,再求值:(a+b)(a﹣b)﹣(a﹣b)2+2b2,其中a=﹣3,b=12.
    21.如图,在△ABC中,点E是AC上一点,AE=AB,过点E作DE∥AB,且DE=AC.
    (1)求证:△ABC≌△EAD;
    (2)若∠B=76°,∠ADE=32°,∠ECD=52°,求∠CDE的度数.
    22.为了美化校园,我校欲购进甲、乙两种工具,如果购买甲种3件,乙种2件,共需56元;如果购买甲种1件,乙种4件,共需32元.
    (1)甲、乙两种工具每件各多少元?
    (2)现要购买甲、乙两种工具共100件,总费用不超过1000元,那么甲种工具最多购买多少件?
    23.【知识生成】通过不同的方法表示同一图形的面积,可以探求相应的等式,两个边长分别为a,b的直角三角形和一个两条直角边都是c的直角三角形拼成如图所示的梯形,请用两种方法计算梯形面积.
    (1)方法一可表示为 ;
    方法二可表示为 ;
    (2)根据方法一和方法二,你能得出a,b,c之间的数量关系是 (等式的两边需写成最简形式);
    (3)由上可知,一直角三角形的两条直角边长为6和8,则其斜边长为 .
    【知识迁移】通过不同的方法表示同一几何体的体积,也可以探求相应的等式.如图2是边长为a+b的正方体,被如图所示的分割线分成8块.
    (4)用不同方法计算这个正方体体积,就可以得到一个等式,这个等式可以为 .(等号两边需化为最简形式)
    (5)已知2m﹣n=4,mn=2,利用上面的规律求8m3﹣n3的值.
    24.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒.
    (1)CP的长为 cm(用含t的代数式表示);
    (2)若存在某一时刻t,使得△EBP和△PCQ同时为等腰直角三角形时,求t与a的值.
    (3)若以E,B,P为顶点的三角形和以P,C,Q为顶点的三角形全等,求t与a的值.
    25.如图,MN∥GH,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若∠NAO=116°,∠OBH=144°.
    (1)∠AOB= °;
    (2)如图2,点C、D是∠NAO、∠GBO角平分线上的两点,且∠CDB=35°,求∠ACD的度数;
    (3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若∠MAE=n∠OAE,∠HBF=n∠OBF,且∠AFB=60°,求n的值.
    江苏省苏州市2022-2023学年度
    七年级下数学第二次月考模拟卷(一)
    参考答案与试题解析
    一.选择题(共8小题)
    1.下列运算正确的是( )
    A.3ab﹣ab=3B.(a+b)2=a2+b2
    C.a÷a﹣1=1(a≠0)D.(﹣3a2b)2=9a4b2
    【考点】完全平方公式;负整数指数幂;合并同类项;幂的乘方与积的乘方;同底数幂的除法.
    【分析】根据合并同类项,完全平方公式,同底数幂的除法,幂的乘方与积的乘方法则作答.
    【解答】解:A、3ab﹣ab=2ab,故本选项不符合题意;
    B、(a+b)2=a2+2ab+b2,故本选项不符合题意;
    C、a÷a﹣1=a2,故本选项不符合题意;
    D、(﹣3a2b)2=9a4b2,故本选项符合题意.
    故选:D.
    2.若m>n,下列不等式一定成立的是( )
    A.m﹣2>n+2B.2m>2nC.−m2>n2D.m2>n2
    【考点】不等式的性质.
    【分析】根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.
    【解答】解:A、左边减2,右边加2,故A错误;
    B、两边都乘以2,不等号的方向不变,故B正确;
    C、左边除以﹣2,右边除以2,故C错误;
    D、两边乘以不同的数,故D错误;
    故选:B.
    3.学习平行线的性质后,老师给小明出了一道题:如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是多少度?请你帮小明求出( )
    A.120°B.130°C.140°D.150°
    【考点】平行线的性质.
    【分析】作BD∥AE,如图,利用平行线的传递性得到BD∥CF,再根据平行线的性质由BD∥AE得到∠ABD=∠A=120°,则∠DBC=30°,然后利用BD∥CF求出∠C.
    【解答】解:作BD∥AE,如图,
    ∵AE∥CF,
    ∴BD∥CF,
    ∵BD∥AE,
    ∴∠ABD=∠A=120°,
    ∴∠DBC=150°﹣120°=30°,
    ∵BD∥CF,
    ∴∠C+∠DBC=180°,
    ∴∠C=180°﹣30°=150°.
    故选:D.
    4.若多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个一次因式2x﹣3,则a的值为( )
    A.1B.5C.﹣1D.﹣5
    【考点】因式分解﹣十字相乘法等.
    【分析】先分解,再对比求出a.
    【解答】解:∵多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个次因式2x﹣3,﹣6=﹣3×2.
    ∴2x2+ax﹣6=(2x﹣3)(x+2)=2x2+x﹣6.
    ∴a=1.
    故选A.
    5.下列命题中共有几个真命题( )
    ①各边相等的两个多边形一定全等;
    ②三角形的三个内角中至少有两个锐角;
    ③三角形的内角大于它的外角;
    ④同旁内角互补.
    A.1个B.2个C.3个D.4个
    【考点】命题与定理.
    【分析】根据全等图形的概念、三角形内角和定理、三角形的外角性质、平行线的性质判断即可.
    【解答】解:①各边相等的两个多边形不一定全等,故本小题说法是假命题;
    ②三角形的三个内角中至少有两个锐角,本小题说法是真命题;
    ③三角形的内角大于与它不相邻的外角,故本小题说法是假命题;
    ④两直线平行,同旁内角互补,故本小题说法是假命题;
    故选:A.
    6.根据下列条件不能画出唯一△ABC的是( )
    A.AB=5,BC=6,AC=7B.AB=5,BC=6,∠B=45°
    C.AB=5,AC=4,∠C=90°D.AB=3,AC=4,∠C=5°
    【考点】全等三角形的判定.
    【分析】根据全等三角形的判定定理逐个判断即可.
    【解答】解:A.符合全等三角形的判定定理SSS,能作出唯一的△ABC,故本选项不符合题意;
    B.符合全等三角形的判定定理SAS,能作出唯一的△ABC,故本选项不符合题意;
    C.符合两直角三角形全等的判定定理HL,能作出唯一的△ABC,故本选项不符合题意;
    D.不符合全等三角形的判定定理,不能作出唯一的△ABC,故本选项符合题意;
    故选:D.
    7.观察:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,据此规律,当(x﹣1)(x5+x4+x3+x2+x+1)=0时,代数式x2021﹣1的值为( )
    A.1B.0C.1或﹣1D.0或﹣2
    【考点】平方差公式;规律型:数字的变化类;多项式乘多项式.
    【分析】先根据规律求x的值,再求代数式的值.
    【解答】解:∵(x﹣1)(x5+x4+x3+x2+x+1)=0.
    ∴x6﹣1=0.
    ∴x6=1.
    ∴(x3)2=1.
    ∴x3=±1.
    ∴x=±1.
    当x=1时,原式=12021﹣1=0.
    当x=﹣1时,原式=12021﹣1=﹣2.
    故选:D.
    8.如图,△OAB为等腰直角三角形(∠A=∠B=45°,∠AOB=90°),△OCD为等边三角形(∠C=∠D=∠COD=60°),满足OC>OA,△OCD绕点O从射线OC与射线OA重合的位置开始,逆时针旋转,旋转的角度为α(0°<α<360°),下列说法正确的有( )个
    ①当α=15°时,DC∥AB;②当OC⊥AB时,α=45°;③当边OB与边OD在同一直线上时,直线DC与直线AB相交形成的锐角为15°;④整个旋转过程,共有10个位置使得△OAB与△OCD有一条边平行
    A.1B.2C.3D.4
    【考点】旋转的性质;平行线的判定与性质;直角三角形的性质.
    【分析】设OC与AB交点为M,OD与AB交点为N,当α=15°时,可得∠OMN=α+∠A=60°,可证DC∥AB;当OC⊥AB时,α+∠A=90°,可得α=30°;当边OB与边OD在同一直线上时,应分两种情况分别计算出夹角即可;整个旋转过程,因OC、OB、OD、OA都有交点,只有AB和CD、OA和CD、OB和CD存在平行,根据图形的对称性可判断有10个位置使得△OAB与△OCD有一条边平行.
    【解答】解:设OC与AB交点为M,OD与AB交点为N,
    当α=15°时,∠OMN=α+∠A=60°,
    ∴∠OMN=∠C,
    ∴DC∥AB,
    故①正确;
    当OC⊥AB时,α+∠A=90°或α﹣180°=90°﹣∠A,
    ∴α=45°或225°,
    故②错误;
    当边OB与边OD在同一直线上时,设CD与AB交点为E,分以下两种情况,
    (1)OB与OD重合时,如下图
    此时∠EBO=∠ABO=45°,∠EDB=180°﹣∠ODC=180°﹣60°=120°,
    ∴∠E=180°﹣∠EBO﹣∠EDB=180°﹣45°﹣120°=15°,
    (2)OB与OD在同一直线上且不重合时,如下图,
    此时∠∠EBD=45°,∠EDB=180°﹣∠ODC=180°﹣60°=120°,
    ∴∠E=180°﹣∠EBD﹣∠EDB=180°﹣45°﹣120°=15°,
    故③正确;
    整个旋转过程,因OC、OB、OD、OA都有交点,故有AB和CD、OA和CD、OB和CD存在平行,还有AB与OC,OD分别平行,根据图形的对称性可判断有10个位置使得△OAB与△OCD有一条边平行,
    故④正确;
    故选:C.
    二.填空题(共8小题)
    9.请写出“等腰三角形的两底角相等”的逆命题: 两个角相等三角形是等腰三角形 .
    【考点】命题与定理.
    【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.
    【解答】解:∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,
    ∴命题“等腰三角形的两个底角相等”的逆命题是“两个底角相等三角形是等腰三角形”,
    故答案为:两个角相等三角形是等腰三角形.
    10.若am=8,an=2,则am﹣n= 4 .
    【考点】同底数幂的除法.
    【分析】根据同底数幂的除法法则求解.
    【解答】解:am﹣n=aman=8÷2=4.
    故答案为:4.
    11.已知x=2﹣t,y=3t﹣1,用含x的代数式表示y,可得y= 5﹣3x .
    【考点】解二元一次方程.
    【分析】先用含有x的式子表示t,然后代入y=3t﹣1中,直接求解.
    【解答】解:∵x=2﹣t,
    ∴t=2﹣x,
    代入y=3t﹣1得,y=3(2﹣x)﹣1=5﹣3x,
    即y=5﹣3x.
    故答案为:5﹣3x.
    12.一元一次不等式的解集在数轴上如图表示,该不等式有两个负整数解,则a的取值范围是 ﹣3<a≤﹣2 .
    【考点】一元一次不等式的整数解;在数轴上表示不等式的解集.
    【分析】先根据数轴写出不等式的解集,再根据该不等式有两个负整数解,可以写出这两个负整数,从而可以得到a的取值范围.
    【解答】解:由数轴可得,
    x≥a,
    ∵该不等式有两个负整数解,
    ∴这两个负整数解是﹣1,﹣2,
    ∴﹣3<a≤﹣2,
    故答案为:﹣3<a≤﹣2.
    13.如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于28”为一次运算.若运算进行了3次才停止,则x的取值范围是 2<x≤4 .
    【考点】一元一次不等式组的应用.
    【分析】根据第二次运算结果不大于28,且第三次运算结果要大于28,列出关于x的一元一次不等式组,解之即可得出x的取值范围.
    【解答】解:依题意得:3(3x−2)−2≤283[3(3x−2)−2]−2>28,
    解得:2<x≤4,
    故答案为:2<x≤4.
    14.如图,在△ACD中,∠CAD=90°,AC=6,AD=8,AB∥CD,E是CD上一点,BE交AD于点F,若EF=BF,则图中阴影部分的面积为 24 .
    【考点】全等三角形的判定与性质;平行线的性质;三角形的面积.
    【分析】证明△BAF≌△EDF(AAS),则S△BAF=S△DEF,利用割补法可得阴影部分的面积.
    【解答】解:∵AB∥CD,
    ∴∠BAD=∠D,
    在△BAF和△EDF中,
    ∠BAD=∠D∠AFB=∠DFEBF=EF,
    ∴△BAF≌△EDF(AAS),
    ∴S△BAF=S△DEF,
    ∴图中阴影部分的面积=S四边形ACEF+S△AFB=S△ACD=12⋅AC⋅AD=12×6×8=24.
    故答案为:24.
    15.若m2=n+2021,n2=m+2021(m≠n),那么代数式m3﹣2mn+n3的值 ﹣2021 .
    【考点】因式分解的应用.
    【分析】将两式m2=n+2021,n2=m+2021相减得出m+n=﹣1,将m2=n+2021两边乘以m,n2=m+2021两边乘以n再相加便可得出.
    【解答】解:将两式m2=n+2021,n2=m+2021相减,
    得m2﹣n2=n﹣m,
    (m+n)(m﹣n)=n﹣m,(因为m≠n,所以m﹣n≠0),
    m+n=﹣1,
    解法一:
    将m2=n+2021两边乘以m,得m³=mn+2021m①,
    将n2=m+2021两边乘以n,得n³=mn+2021n②,
    由①+②得:m³+n³=2mn+2021(m+n),
    m³+n³﹣2mn=2021(m+n),
    m³+n³﹣2mn=2021×(﹣1)=﹣2021.
    故答案为﹣2021.
    解法二:
    ∵m2=n+2021,n2=m+2021(m≠n),
    ∴m2﹣n=2021,n2﹣m=2021(m≠n),
    ∴m3﹣2mn+n3
    =m3﹣mn﹣mn+n3
    =m(m2﹣n)+n(n2﹣m)
    =2021m+2021n
    =2021(m+n)
    =﹣2021,
    故答案为﹣2021.
    16.如图,任意画一个∠BAC=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AD=AE;④PD=PE;⑤BD+CE=BC;其中正确的结论为 ①②④⑤ .(填写序号)
    【考点】全等三角形的判定与性质;角平分线的性质.
    【分析】由三角形内角和定理和角平分线得出∠PBC+∠PCB的度数,再由三角形内角和定理可求出∠BPC的度数,①正确;由∠BPC=120°可知∠DPE=120°,过点P作PF⊥AB,PG⊥AC,PH⊥BC,由角平分线的性质可知AP是∠BAC的平分线,②正确;PF=PG=PH,故∠AFP=∠AGP=90°,由四边形内角和定理可得出∠FPG=120°,故∠DPF=∠EPG,由全等三角形的判定定理可得出△PFD≌△PGE,故可得出PD=PE,④正确;由三角形全等的判定定理可得出△BHP≌△BFP,△CHP≌△CGP,故可得出BH=BD+DF,CH=CE﹣GE,再由DF=EG可得出BC=BD+CE,⑤正确;即可得出结论.
    【解答】解:∵BE、CD分别是∠ABC与∠ACB的角平分线,∠BAC=60°,
    ∴∠PBC+∠PCB=12(180°﹣∠BAC)=12(180°﹣60°)=60°,
    ∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣60°=120°,①正确;
    ∵∠BPC=120°,
    ∴∠DPE=120°,
    过点P作PF⊥AB,PG⊥AC,PH⊥BC,
    ∵BE、CD分别是∠ABC与∠ACB的角平分线,
    ∴AP是∠BAC的平分线,②正确;
    ∴PF=PG=PH,
    ∵∠BAC=60°∠AFP=∠AGP=90°,
    ∴∠FPG=120°,
    ∴∠DPF=∠EPG,
    在△PFD与△PGE中,∠DFP=∠EGPPF=PG∠DPF=∠EPG,
    ∴△PFD≌△PGE(ASA),
    ∴PD=PE,④正确;
    在Rt△BHP与Rt△BFP中,BP=BPPF=PH,
    ∴Rt△BHP≌Rt△BFP(HL),
    同理,Rt△CHP≌Rt△CGP,
    ∴BH=BD+DF,CH=CE﹣GE,
    两式相加得,BH+CH=BD+DF+CE﹣GE,
    ∵DF=EG,
    ∴BC=BD+CE,⑤正确;
    没有条件得出AD=AE,③不正确;
    故答案为:①②④⑤.
    三.解答题(共9小题)
    17.计算:
    (1)计算−12022+(π−3)0+(12)−1;
    (2)(﹣a)3•a2+(2a4)2÷a3.
    【考点】整式的除法;零指数幂;负整数指数幂;有理数的减法;同底数幂的乘法;幂的乘方与积的乘方.
    【分析】(1)直接利用有理数的乘方运算法则以及零指数幂的性质、负整数指数幂的性质分别化简,进而合并得出答案;
    (2)直接利用积的乘方运算法则以及整式的乘除运算法则分别化简,进而计算得出答案.
    【解答】解:(1)原式=﹣1+1+2
    =2;
    (2)原式=﹣a5+4a8÷a3
    =﹣a5+4a5
    =3a5.
    18.分解因式:
    (1)6x2﹣9xy+3x;
    (2)xy2﹣x.
    【考点】提公因式法与公式法的综合运用.
    【分析】(1)直接提公因式3x可分解因式;
    (2)先提公因式x,再根据平方差公式可解答.
    【解答】解:(1)6x2﹣9xy+3x
    =3x(2x﹣3y+1);
    (2)xy2﹣x
    =x(y2﹣1)
    =x(y+1)(y﹣1).
    19.(1)解方程组x+2y=42x+3y=1;
    (2)解不等式组3(x−1)<5x+12x−4≤x−12,并写出它的最大整数解.
    【考点】一元一次不等式组的整数解;解二元一次方程组;解一元一次不等式组.
    【分析】(1)方程组利用加减消元法求出解即可;
    (2)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而求出最大整数解即可.
    【解答】解:(1)x+2y=4①2x+3y=1②,
    ①×2﹣②得:y=7,
    把y=7代入①得:x+14=4,
    解得:x=﹣10,
    则方程组的解为x=−10y=7;
    (2)3(x−1)<5x+1①2x−4≤x−12②,
    由①得:x>﹣2,
    由②得:x≤73,
    ∴不等式组的解集为﹣2<x≤73,
    则不等式组最大整数解为2.
    20.先化简,再求值:(a+b)(a﹣b)﹣(a﹣b)2+2b2,其中a=﹣3,b=12.
    【考点】整式的混合运算—化简求值.
    【分析】原式利用平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.
    【解答】解:原式=a2﹣b2﹣a2+2ab﹣b2+2b2=2ab,
    当a=﹣3,b=12时,原式=﹣3.
    21.如图,在△ABC中,点E是AC上一点,AE=AB,过点E作DE∥AB,且DE=AC.
    (1)求证:△ABC≌△EAD;
    (2)若∠B=76°,∠ADE=32°,∠ECD=52°,求∠CDE的度数.
    【考点】全等三角形的判定与性质.
    【分析】(1)根据两直线平行,内错角相等可得∠BAC=∠AED,再利用“边角边”证明即可;
    (2)根据全等三角形对应角相等可得∠B=∠EAD,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CED,再根据三角形的内角和等于180°列式计算即可得解.
    【解答】(1)证明:∵DE∥AB,
    ∴∠BAC=∠AED,
    在△ABC和△EAD中,AE=AB∠BAC=∠AEDDE=AC,
    ∴△ABC≌△EAD(SAS);
    (2)解:∵△ABC≌△EAD,
    ∴∠B=∠EAD=76°,
    由三角形的外角性质得,∠CED=∠EAD+∠ADE=76°+32°=108°,
    在△CDE中,∠CDE=180°﹣∠CED﹣∠ECD=180°﹣108°﹣52°=20°.
    22.为了美化校园,我校欲购进甲、乙两种工具,如果购买甲种3件,乙种2件,共需56元;如果购买甲种1件,乙种4件,共需32元.
    (1)甲、乙两种工具每件各多少元?
    (2)现要购买甲、乙两种工具共100件,总费用不超过1000元,那么甲种工具最多购买多少件?
    【考点】一元一次不等式的应用;二元一次方程组的应用.
    【分析】(1)设甲种工具每件x元,乙种工具每件y元,根据“如果购买甲种3件,乙种2件,共需56元;如果购买甲种1件,乙种4件,共需32元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
    (2)设甲种工具购买了m件,则乙种工具购买了(100﹣m)件,根据总价=单价×数量结合总费用不超过1000元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
    【解答】解:(1)设甲种工具每件x元,乙种工具每件y元,
    依题意得:3x+2y=56x+4y=32,
    解得:x=16y=4.
    答:甲种工具每件16元,乙种工具每件4元.
    (2)设甲种工具购买了m件,则乙种工具购买了(100﹣m)件,
    依题意得:16m+4(100﹣m)≤1000,
    解得:m≤50.
    答:甲种工具最多购买50件.
    23.【知识生成】通过不同的方法表示同一图形的面积,可以探求相应的等式,两个边长分别为a,b的直角三角形和一个两条直角边都是c的直角三角形拼成如图所示的梯形,请用两种方法计算梯形面积.
    (1)方法一可表示为 12ab+12ab+12c2 ;
    方法二可表示为 12(a+b)2 ;
    (2)根据方法一和方法二,你能得出a,b,c之间的数量关系是 c2=a2+b2 (等式的两边需写成最简形式);
    (3)由上可知,一直角三角形的两条直角边长为6和8,则其斜边长为 10 .
    【知识迁移】通过不同的方法表示同一几何体的体积,也可以探求相应的等式.如图2是边长为a+b的正方体,被如图所示的分割线分成8块.
    (4)用不同方法计算这个正方体体积,就可以得到一个等式,这个等式可以为 (a+b)3=a3+3a2b+3ab2+b3 .(等号两边需化为最简形式)
    (5)已知2m﹣n=4,mn=2,利用上面的规律求8m3﹣n3的值.
    【考点】勾股定理;认识立体图形;几何体的表面积.
    【分析】(1)分两种方法表示出面积即可;
    (2)把(1)中的式子整理可得答案;
    (3)把数值代入(2)中得到的结论即可;
    (4)分两种方法表示出体积即可;
    (5)根据(4)的等式代入数值可得答案.
    【解答】解:(1)方法一可表示为:12ab+12ab+12c2;
    方法二可表示为:12(a+b)2.
    故答案为:12ab+12ab+12c2;12(a+b)2.
    (2)∵12ab+12ab+12c2=12(2ab+c2),
    12(a+b)2=12(2ab+a2+b2),
    ∴12(2ab+c2)=12(2ab+a2+b2),
    ∴c2=a2+b2.
    故答案为:c2=a2+b2.
    (3)∵c2=a2+b2=82+62=100,
    ∴c=10.
    故答案为:10.
    (4)方法一可表示为:(a+b)3;
    方法二可表示为:a3+3a2b+3ab2+b3.
    ∴等式为:(a+b)3=a3+3a2b+3ab2+b3.
    故答案为:(a+b)3=a3+3a2b+3ab2+b3.
    (5)由(4)可得:
    (2m﹣n)3=8m3﹣12m2n+6mn2﹣n3=8m3﹣n3﹣6mn(2m﹣n),
    ∵2m﹣n=4,mn=2,
    ∴64=8m3﹣n3﹣6×2×4,
    ∴8m3﹣n3=64+48=112.
    24.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒.
    (1)CP的长为 (10﹣4t) cm(用含t的代数式表示);
    (2)若存在某一时刻t,使得△EBP和△PCQ同时为等腰直角三角形时,求t与a的值.
    (3)若以E,B,P为顶点的三角形和以P,C,Q为顶点的三角形全等,求t与a的值.
    【考点】四边形综合题.
    【分析】(1)根据PC=BC﹣PB计算即可.
    (2)根据等腰直角三角形的性质构建方程求解即可.
    (3)分△BPE≌△CPQ和△BPE≌△CQP两种情况进行解答.
    【解答】解:(1)PC=BC﹣BP=(10﹣4t)cm,
    故答案为(10﹣4t).
    (2)当△BPE是等腰直角三角形时,BE=BP=6cm,
    ∴t=64=1.5,
    当△PCQ是等腰直角三角形时,PC=CQ=10﹣6=4(cm),
    ∴a=41.5=83
    综上所述,t=1.5,a=83.
    (2)当△BPE≌△CPQ时,
    BP=PC,BE=CQ,
    即4t=10﹣4t,at=6,
    解得t=54,a=4.8
    当△BPE≌△CQP时,
    BP=CQ,BE=PC,
    即4t=at,10﹣4t=6,
    解得t=1,a=4.
    25.如图,MN∥GH,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若∠NAO=116°,∠OBH=144°.
    (1)∠AOB= 100 °;
    (2)如图2,点C、D是∠NAO、∠GBO角平分线上的两点,且∠CDB=35°,求∠ACD的度数;
    (3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若∠MAE=n∠OAE,∠HBF=n∠OBF,且∠AFB=60°,求n的值.
    【考点】平行线的性质.
    【分析】(1)过O作OP∥MN,由MN∥OP∥GH,得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,故∠AOB=100°;
    (2)过C作CE∥MN,过D作DF∥MN,由MN∥CE∥DF∥GH,得∠NAC=∠ACE,∠ECD=∠CDF,∠FDB=∠DBG,而AC平分∠NAO,BD平分∠OBG,∠NAO=116°,∠OBH=144°,即得∠ACE=∠NAC=12∠NAO=58°,∠FDB=∠DBG=12∠OBG=12(180°﹣∠OBH)=18°,根据∠CDB=35°,得∠CDF=∠CDB﹣∠FDB=17°=∠ECD,即得∠ACD=∠ACE+∠ECD=75°;
    (3)设BF交MN于T,由∠NAO=116°,得∠MAO=64°,故∠MAE=nn+1×64°=∠FAT,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=nn+1×144°,从而∠FTN=∠FBH=nn+1×144°,又∠FTN=∠F+∠FAT,得nn+1×144°=60°+nn+1×64°,即得n=3.
    【解答】解:(1)过O作OP∥MN,如图:
    ∵MN∥GH,
    ∴MN∥OP∥GH,
    ∴∠NAO+∠POA=180°,∠POB+∠OBH=180°,
    ∴∠NAO+∠AOB+∠OBH=360°,
    ∵∠NAO=116°,∠OBH=144°,
    ∴∠AOB=360°﹣116°﹣144°=100°,
    故答案为:100.
    (2)过C作CE∥MN,过D作DF∥MN,如图:
    ∵MN∥GH,
    ∴MN∥CE∥DF∥GH,
    ∴∠NAC=∠ACE,∠ECD=∠CDF,∠FDB=∠DBG,
    ∵AC平分∠NAO,BD平分∠OBG,∠NAO=116°,∠OBH=144°,
    ∴∠ACE=∠NAC=12∠NAO=58°,∠FDB=∠DBG=12∠OBG=12(180°﹣∠OBH)=18°,
    ∵∠CDB=35°,
    ∴∠CDF=∠CDB﹣∠FDB=17°=∠ECD,
    ∴∠ACD=∠ACE+∠ECD=75°;
    (3)设BF交MN于T,如图:
    ∵∠NAO=116°,
    ∴∠MAO=64°,
    ∵∠MAE=n∠OAE,
    ∴∠MAE=nn+1×64°=∠FAT,
    ∵∠OBH=144°,∠HBF=n∠OBF,
    ∴∠FBH=nn+1×144°,
    ∵MN∥GH,
    ∴∠FTN=∠FBH=nn+1×144°,
    ∵∠FTN=∠F+∠FAT,
    ∴nn+1×144°=60°+nn+1×64°,
    解得n=3
    相关试卷

    江苏省苏州市区2022-2023学年七下数学期末调研模拟试题含答案: 这是一份江苏省苏州市区2022-2023学年七下数学期末调研模拟试题含答案,共6页。试卷主要包含了根据PM2.5空气质量标准,若,则下列不等式不成立的是等内容,欢迎下载使用。

    2022-2023学年江苏省苏州市七年级(下)月考数学试卷(3月份)(含解析): 这是一份2022-2023学年江苏省苏州市七年级(下)月考数学试卷(3月份)(含解析),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    【中考数学】2022-2023学年江苏省苏州市专项突破仿真模拟卷(一模二模)含答案: 这是一份【中考数学】2022-2023学年江苏省苏州市专项突破仿真模拟卷(一模二模)含答案,共57页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map