|课件下载
搜索
    上传资料 赚现金
    1.5 三角函数的应用(课件+教学设计)-北师大版数学九年级下册
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      北师大版初中数学九年级下册1.5 三角函数的应用 同步课件.pptx
    • 教案
      北师大版初中数学九年级下册1.5 三角函数的应用 教学设计(含教学反思).docx
    1.5 三角函数的应用(课件+教学设计)-北师大版数学九年级下册01
    1.5 三角函数的应用(课件+教学设计)-北师大版数学九年级下册02
    1.5 三角函数的应用(课件+教学设计)-北师大版数学九年级下册03
    1.5 三角函数的应用(课件+教学设计)-北师大版数学九年级下册04
    1.5 三角函数的应用(课件+教学设计)-北师大版数学九年级下册05
    1.5 三角函数的应用(课件+教学设计)-北师大版数学九年级下册06
    1.5 三角函数的应用(课件+教学设计)-北师大版数学九年级下册07
    1.5 三角函数的应用(课件+教学设计)-北师大版数学九年级下册08
    1.5 三角函数的应用(课件+教学设计)-北师大版数学九年级下册01
    1.5 三角函数的应用(课件+教学设计)-北师大版数学九年级下册02
    还剩27页未读, 继续阅读
    下载需要40学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册5 三角函数的应用教学课件ppt

    展开
    这是一份数学九年级下册5 三角函数的应用教学课件ppt,文件包含北师大版初中数学九年级下册15三角函数的应用同步课件pptx、北师大版初中数学九年级下册15三角函数的应用教学设计含教学反思docx等2份课件配套教学资源,其中PPT共35页, 欢迎下载使用。

    1.正确理解方位角、仰角和坡角的概念; 2.三角函数在航海、测量、改造工程等方面的应用
    与方位角有关的实际问题
    方向角: 如图,指北或指南的方向线与目标方向线所成的小于90°的角叫做方向角.
    例:如图,海中有一个小岛A,该岛四周10海里内有暗礁.
    一货轮由西向东航行,开始在A岛南偏西55º的B处,往东行驶20海里后到达该岛的南偏西25º的C处.之后,货轮继续向东航行.
    你认为货轮继续向东航行途中会有触礁的危险吗?
    你是怎样想的?与同伴进行交流.
    Rt△ABD中,
    Rt△ACD中,
    ∴BC=BD-CD=x·tan55°-x·tan25°
    ∴x= ≈20.79 海里
    ∴货轮继续向东航行途中没有触礁的危险.
    例:如图, 一艘海轮位于灯塔P的 北偏东65°方向,距离灯塔80 n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处.这时,B处距离灯塔 P有多远(结果取整数)?
    解:如图,在Rt△APC中, PC =PA • cs(90°-65°) =80 × cs 25° ≈72. 505. 在 Rt△BPC 中, ∠B = 34°, 因此,当海轮到达位于灯塔P的南偏东34°方向时,它距离灯塔P大约 130 n mile.
    利用解直角三角形解决简单问题的一般解题步骤: 1. 将实际问题抽象为数学问题;2. 根据条件的特点,适当选用锐角三角函数等去解直角三角形;3. 得到数学问题的答案;4. 得到实际问题的答案.
    仰角和俯角: 如图,在视线与水平线所成的角中,视线在水平线上方的叫做_________,视线在水平线下方的叫做________.
    例:欣赏完图片后,如图,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30º,再往塔的方向前进50m至B处,测得仰角为60º,那么该塔有多高?(小明的身高忽略不计,结果精确到1m).
    答:该塔约有43m高.
    解:如图,根据题意可知,∠A=30º, ∠DBC=60º,AB=50m. 设CD=x, 则∠ADC=60º,∠BDC=30º,
    例 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m).
    分析:我们知道,在视线与水平线所成的角中视线在水平线上方的是仰角,视线在水平线下方的是俯角,因此,在图中,α=30°,β=60°.Rt△ABD中,α=30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
    解:如图,α = 30°,β= 60°, AD=120.
    答:这栋楼高约为277.1m.
    常见的俯角仰角问题的基本图形
    坡度和坡角: 如图,通常把坡面的铅直高度h和水平宽度l之比叫_______,用字母i表示,把坡面与水平面的夹角叫做_______,记做α,于是i=____=tanα,显然,坡度越大,α角越大,坡面就越陡.
    坡度和坡角有什么区别?
    例:某商场准备改善原有楼梯的安全性能,把倾角由原来的40°减至35°,已知原楼梯的长度为4m,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.01m).
    如图,∠ADB=90°,
    答:调整后的楼梯会加长约0.48m.
    答:楼梯多占约0.61m长的一段地面.
    例 一段路基的横断面是梯形,高为4米,上底的宽是12米,路基的坡面与地面的倾角分别是45°和30°,求路基下底的宽(精确到0.1米, ).  
    解:作DE⊥AB,CF⊥AB,垂足分别为E、F.由题意可知  DE=CF=4(米),  CD=EF=12(米). 在Rt△ADE中, 在Rt△BCF中,同理可得 因此AB=AE+EF+BF≈4+12+6.93≈22.93(米).  答: 路基下底的宽约为22.93米.
    1. 课外活动小组测量学校旗杆的高度. 当太阳光线与 地面成30°角时,测得旗杆在地面上的影长为24米, 那么旗杆的高度约是 ( )
    2. 如图,要测量B点到河岸AD的距离,在A点测得 ∠BAD=30°,在C点测得∠BCD=60°,又测得 AC=100米,则B点到河岸AD的距离为 ( )
    A. 100米 B. 米 C. 米 D. 50米
    3.如图1,在高出海平面100米的悬崖顶A处,观测海平面上一艘小船B,并测得它的俯角为45°,则船与观测者之间的水平距离BC=_________米.4.如图2,两建筑物AB和CD的水平距离为30米,从A点测得D点的俯角为30°,测得C点的俯角为60°,则建筑物CD的高为_____米.
    4. 某海滨浴场东西走向的海岸线可近似看作直线l(如图).救生员甲在A处的瞭望台上观察海面情况,发现其正北方向的B处有人发出求救信号.他立即沿AB方向径直前往救援,同时通知正在海岸线上巡逻的救生员乙.乙马上从C处入海,径直向B处游去.甲在乙入海10秒后赶到海岸线上的D处,再向B处游去.若CD=40米,B在C的北偏东35°方向,甲、乙的游泳速度都是2米/秒,则谁先到达B处?请说明理由 (参考数据:sin55°≈0.82,cs55°≈0.57,tan55°≈1.43).
    分析: 在Rt△CDB中,利用三角函数即可求得BC,BD的长,则可求得甲、乙所用的时间,比较二者之间的大小即可.
    5.如图,某拦河坝截面的原设计方案为:AH∥BC,坡角∠ABC=74°,坝顶到坝脚的距离AB=6 m.为了提高拦河坝的安全性,现将坡角改为55°,由此,点A需向右平移至点D,请你计算AD的长(精确到0.1 m).
    分析: 将坝顶与坝脚的距离看做直角三角形的斜边,将坡角看做直角三角形的一个锐角,分别作AE,DF垂直于BC,构造直角三角形,求出BE,BF,进而得到AD的长.
    解直角三角形的简单应用
    1. 将实际问题抽象为数学问题
    2. 根据条件的特点,适当选用锐角三角函数等去解直角三角形
    3. 得到数学问题的答案
    4. 得到实际问题的答案
    1、教材“习题1.6”中第1、2题.2、完成练习册中本课时的练习   
    相关课件

    初中数学北师大版九年级下册第一章 直角三角形的边角关系5 三角函数的应用授课ppt课件: 这是一份初中数学北师大版九年级下册第一章 直角三角形的边角关系5 三角函数的应用授课ppt课件,共18页。PPT课件主要包含了引入新课,探究新知,巩固练习,达标检测,小结与反思,布置作业等内容,欢迎下载使用。

    初中数学5 三角函数的应用课文课件ppt: 这是一份初中数学5 三角函数的应用课文课件ppt,文件包含15三角函数的应用pptx、15三角函数的应用第2课时三角函数的应用2doc、15三角函数的应用第1课时三角函数的应用1doc等3份课件配套教学资源,其中PPT共19页, 欢迎下载使用。

    初中北师大版第一章 直角三角形的边角关系5 三角函数的应用多媒体教学课件ppt: 这是一份初中北师大版第一章 直角三角形的边角关系5 三角函数的应用多媒体教学课件ppt,共28页。PPT课件主要包含了教学目标,教学重点,教学难点,情景导入,《泰坦尼克号》,获取新知,北偏东30°,南偏西45°,射线OA,射线OE等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        1.5 三角函数的应用(课件+教学设计)-北师大版数学九年级下册
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map