- 2024版新教材高中数学第四章立体几何初步4.3直线与直线直线与平面的位置关系4.3.1空间中直线与直线的位置关系第二课时异面直线课件湘教版必修第二册 课件 1 次下载
- 2024版新教材高中数学第四章立体几何初步4.3直线与直线直线与平面的位置关系4.3.2空间中直线与平面的位置关系第一课时直线与平面平行的判定课件湘教版必修第二册 课件 0 次下载
- 2024版新教材高中数学第四章立体几何初步4.3直线与直线直线与平面的位置关系4.3.2空间中直线与平面的位置关系第三课时直线与平面垂直的判定课件湘教版必修第二册 课件 0 次下载
- 2024版新教材高中数学第四章立体几何初步4.3直线与直线直线与平面的位置关系4.3.2空间中直线与平面的位置关系第四课时直线与平面垂直的性质课件湘教版必修第二册 课件 0 次下载
- 2024版新教材高中数学第四章立体几何初步4.4平面与平面的位置关系4.4.1平面与平面平行第一课时平面与平面平行的判定课件湘教版必修第二册 课件 0 次下载
高中数学湘教版(2019)必修 第二册4.3 直线与直线、直线与平面的位置关系集体备课课件ppt
展开教材要点要点 直线与平面平行的性质
基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)若直线a∥平面α,则直线a与平面α内的任意一条直线都无公共点.( )(2)若直线a∥平面α,则直线a平行于平面α内的任意一条直线.( )(3)若直线a与平面α不平行,则直线a就与平面α内的任一直线都不平行.( )(4)若直线a,b和平面α满足a∥α,b∥α,则a∥b.( )
2.如果直线a∥平面α,那么直线a与平面α内的( )A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线都不相交
解析:因为a∥平面α,直线a与平面α无公共点,因此a和平面α内的任意一条直线都不相交.
3.如果直线a∥平面α,b⊂α,那么a与b的关系是( )A.相交 B.平行或异面C.平行 D.异面
解析:由线面平行的性质得,AB∥CD,AB∥EF,由基本事实4得CD∥EF.
题型 1 利用线面平行的性质定理证明线线平行 例1 如图所示,已知两条异面直线AB与CD,平面MNPQ与AB,CD都平行,且点M,N,P,Q依次在线段AC,BC,BD,AD上,求证:四边形MNPQ是平行四边形.
证明:∵AB∥平面MNPQ,且过AB的平面ABC交平面MNPQ于MN,∴AB∥MN.又过AB的平面ABD交平面MNPQ于PQ,∴AB∥PQ,∴MN∥PQ.同理可证NP∥MQ.∴四边形MNPQ为平行四边形.
方法归纳运用线面平行的性质定理时,应先确定线面平行,再寻找过已知直线的平面与这个平面相交的交线,然后确定线线平行.证题过程应认真领悟线线平行与线面平行的相互转化关系.简记为“过直线,作平面,得交线,得平行”.
跟踪训练1 一平面截空间四边形的四边得到四个交点,如果该空间四边形只有一条对角线与这个截面平行,判断这四个交点围成的四边形的形状.
解析:如图所示,AC∥平面EFGH,则EF∥HG.而对角线BD与平面EFGH不平行,所以EH与FG不平行.所以EFGH是梯形.
题型 2 利用线面平行的性质求线段比例2 如图,已知E,F分别是菱形ABCD的边BC,CD的中点,EF与AC交于点O,点P在平面ABCD之外,M是线段PA上一动点,若PC∥平面MEF,试求PM∶MA的值.
方法归纳解此类题的关键:一是转化,即把线面平行转化为线线平行;二是计算,把要求的线段长或线段比问题,转化为同一个平面内的线段长或线段比问题去求解,此时需认真运算,才能得出正确的结果.
跟踪训练 2 如图,AB,CD为异面直线,且AB∥α,CD∥α,AC,BD分别交α于M,N两点.求证:AM∶MC=BN∶ND.
证明:连接AC,A1C1在长方体ABCDA1B1C1D1中,AA1∥CC1,AA1=CC1,所以四边形ACC1A1是平行四边形,所以AC∥A1C1,因为AC⊄平面A1BC1,A1C1⊂平面A1BC1,所以AC∥平面A1BC1,因为AC⊂平面PAC,平面A1BC1∩平面PAC=MN,所以AC∥MN.因为MN⊄平面ABCD,AC⊂平面ABCD,所以MN∥平面ABCD.
方法归纳直线与平面平行的性质定理和直线与平面平行的判定定理经常综合使用,即通过线线平行推出线面平行,再通过线面平行推出新的线线平行.
跟踪训练3 如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,AC与BD交于点O,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.
证明:如图,连接MO.∵四边形ABCD是平行四边形,∴O是AC的中点.又M是PC的中点,∴AP∥OM.又AP⊄平面BDM,OM⊂平面BDM,∴AP∥平面BDM.又AP⊂平面APGH,平面APGH∩平面BDM=GH,∴AP∥GH.
解析:由直线与平面平行的性质定理知l∥m.
2.如图所示,在空间四边形ABCD中,F,G分别是线BC,CD的中点,EH∥平面CBD,则EH与FG的位置关系是( )A.平行 B.相交C.异面 D.不确定
解析:因为EH∥平面CBD,EH⊂平面ABD,平面CBD∩平面ABD=BD,所以EH∥BD,又FG∥BD,所以EH∥FG.
3.过平面α外的直线l,作一组平面与α相交,如果所得的交线为a,b,c,…,则这些交线的位置关系为( )A.都平行 B.都相交且一定交于同一点C.都相交不一定交于同一点 D.平行或相交于同一点
4.如图所示,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,设D是A1C1上的点且A1B∥平面B1CD,则A1D∶DC1的值为________.
5.如图,AB是圆O的直径,点C是圆O上异于A,B的点,P为平面ABC外一点,E,F分别是PA,PC的中点.记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明.
高中第4章 立体几何初步4.3 直线与直线、直线与平面的位置关系图文课件ppt: 这是一份高中第4章 立体几何初步4.3 直线与直线、直线与平面的位置关系图文课件ppt,共34页。PPT课件主要包含了新知初探·课前预习,题型探究·课堂解透,a∥b,0°90°,答案C,答案B,答案D,易错警示,答案A等内容,欢迎下载使用。
数学4.3 直线与直线、直线与平面的位置关系课前预习ppt课件: 这是一份数学4.3 直线与直线、直线与平面的位置关系课前预习ppt课件,共32页。PPT课件主要包含了新知初探·课前预习,题型探究·课堂解透,l⊥α,两条相交,答案B,l⊥m,答案C,易错警示,答案ABC等内容,欢迎下载使用。
高中数学湘教版(2019)必修 第二册4.3 直线与直线、直线与平面的位置关系课前预习课件ppt: 这是一份高中数学湘教版(2019)必修 第二册4.3 直线与直线、直线与平面的位置关系课前预习课件ppt,共30页。PPT课件主要包含了新知初探·课前预习,题型探究·课堂解透,a⊂α,a∥α,平面外,平面内,答案C,答案D,答案CD,易错警示等内容,欢迎下载使用。