![专题3.7 勾股定理知识点分类训练专题1(专项练习)(学生版)01](http://img-preview.51jiaoxi.com/2/3/14975205/0-1699429886649/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题3.7 勾股定理知识点分类训练专题1(专项练习)(学生版)02](http://img-preview.51jiaoxi.com/2/3/14975205/0-1699429886689/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题3.7 勾股定理知识点分类训练专题1(专项练习)(学生版)03](http://img-preview.51jiaoxi.com/2/3/14975205/0-1699429886714/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
苏科版八年级上册3.1 勾股定理同步测试题
展开2.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.
3.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于_______.
4.如图,在Rt△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°得到△A′B′C,M、M′分别是AB、A′B′的中点,若AC=4,BC=2,则线段MM′的长为____.
5.如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.
6.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.
7.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).
8.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.
9.如图,在△ABC中,AC=BC=2, ∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是_______.
10.在底面直径为3cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为____cm.(结果保留π)
11.如图,学校有一块长方形草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”,他们仅仅少走了________步路(假设步为米),却踩伤了花草.
12.如图,矩形中,,,点是矩形内一动点,且,则的最小值为_____.
13.如图,在Rt△ABC中,平分交BC于D点,E,F分别是上的动点,则的最小值为__________.
14.如图所示,长方体的长为15cm,宽为10cm,高为20cm,点到点的距离为5cm,要从点到点经棱拉一条彩带,彩带的最短长度是________cm.
15.如图所示的网格是正方形网格,则=_____°(点A,B,P是网格线交点).
16.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,
可得到△,则△中边上的高是 .
17.如图所示,两个边长为1个单位长的正方形沿对角线剪开所得的四个三角形能拼成一个较大的正方形,设这个大的正方形的边长为,则 ___;正方形ABCO的点A表示数轴上的数1,以O为圆心OB为半径画弧交数轴于点D,则点D表示数轴上的数为_________.
18.如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共__个.
19.如图,边长为1的正方形网格中,AB__3.(填“>”,“=”或“<”)
20.如图,6×6正方形网格(每个小正方形的边长为1)中,网格线的交点称为格点,△ABC的顶点都在格点上,D是BC的中点.则AC=__________;AD=__________.
21.如图所示的正方形网格中,A,B,C,D,P是网格线交点.若∠APB=α,则∠BPC的度数为 ____(用含α的式子表示).
22.如图,在的方格图中,每个小正方形的边长都为图中阴影是个正方形,顶点均在格点上,则这个正方形的边长是______.
23.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′= _______.
24.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为 .
25.如图,有一块直角三角形纸片,两直角边AC =6cm,BC =8cm,将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,则△BDE的面积为______.
26.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将DAE沿DE折叠,使点A落在对角线BD上的点处,则AE的长为___.
27.如图,已知AD∥BC,AB⊥BC,AB=3.点E为射线 BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为__________ .
28.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处, 折痕为AF,若CD=6,则AF等于__________.
29.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______.
30.把图1中长和宽分别为3和2的两个全等矩形沿对角线分成四个全等的直角三角形,将这四个全等的直角三角形拼成图2所示的正方形,则图2中小正方形ABCD的面积为_____.
31.我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼制成一个大正方形(如下图),设勾a=3,弦c=5,则小正方形ABCD的面积是_______
32.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾,弦,则小正方形ABCD的面积是____.
33.如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为______.
34.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么的值是____.
35.由4个直角边长分别为a,b的直角三角形围成的“赵爽弦图”如图所示,根据大正方形的面积等于小正方形的面积与4个直角三角形的面积的和证明了勾股定理,还可以用来证明结论:若、且为定值,则当_______时,取得最大值.
36.用四个全等的直角三角形拼成如图一个大正方形ABCD和一个小正方形EFGH,这就是著名的“赵爽弦图”.在2002年北京召开的国际数学家大会就用这个弦图作为会标.若AB=10,AF=8,则小正方形EFGH的面积为_____.
37.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S3=8,S4=10,则S=________.
38.如图,在四边形中,,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.
39.如图,所有四边形都是正方形,所有三角形都是直角三角形,若正方形A、C、D的面积依次为4、6、18,则正方形B的面积为____.
40.如图,在中,,分别以、、为边向外作正方形,面积分别记为、、,若,,则______.
41.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形、、、的面积分别是5,4,4,6,则最大的正方形的面积是______.
42.如图,直线上有三个正方形,若的面积分别为5和11,则的面积为__________.
43.如图,将三个大小不同的正方形如图放置,顶点处两两相接,若正方形A的边长为4,C的边长为3,则B的边长为_____________ .
苏科版八年级上册3.1 勾股定理巩固练习: 这是一份苏科版八年级上册3.1 勾股定理巩固练习,共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学苏科版八年级上册3.1 勾股定理课后练习题: 这是一份初中数学苏科版八年级上册3.1 勾股定理课后练习题,共25页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
初中数学苏科版八年级上册3.1 勾股定理精练: 这是一份初中数学苏科版八年级上册3.1 勾股定理精练,共25页。试卷主要包含了解答题等内容,欢迎下载使用。