|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023-2024学年河南省南阳市邓州市十林中学九年级(上)第一次月考数学试卷(含解析)
    立即下载
    加入资料篮
    2023-2024学年河南省南阳市邓州市十林中学九年级(上)第一次月考数学试卷(含解析)01
    2023-2024学年河南省南阳市邓州市十林中学九年级(上)第一次月考数学试卷(含解析)02
    2023-2024学年河南省南阳市邓州市十林中学九年级(上)第一次月考数学试卷(含解析)03
    还剩18页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023-2024学年河南省南阳市邓州市十林中学九年级(上)第一次月考数学试卷(含解析)

    展开
    这是一份2023-2024学年河南省南阳市邓州市十林中学九年级(上)第一次月考数学试卷(含解析),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    1.比较2,,的大小,正确的是( )
    A.B.C.D.
    2.不等式组有3个整数解,则a的取值范围是( )
    A.﹣6≤a<﹣5B.﹣6<a≤﹣5C.﹣6<a<﹣5D.﹣6≤a≤﹣5
    3.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )
    A.1,,B.,,C.6,7,8D.2,3,4
    4.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )
    A.2.147×102B.0.2147×103
    C.2.147×1010D.0.2147×1011
    5.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为( )
    A.﹣3B.﹣2C.﹣1D.1
    6.若一个凸多边形的内角和为720°,则这个多边形的边数为( )
    A.4B.5C.6D.7
    7.如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( )
    A.15B.18C.21D.24
    8.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为( )
    A.8B.﹣8C.4D.﹣4
    9.根据圆规作图的痕迹,可以用直尺成功找到三角形外心的是( )
    A.B.
    C.D.
    10.如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为( )
    A.B.C.D.
    二、填空题(本大题共6小题,每小题3分,共18分)
    11.计算:(+)(﹣)2= .
    12.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)= .
    13.若式子﹣2在实数范围内有意义,则x的取值范围是 .
    14.把长方形纸片ABCD沿对角线AC折叠,得到如图所示的图形,AD平分∠B′AC,则∠B′CD= .
    15.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为 .
    16.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH= .
    三、解答题(本大题共6小题,共72分)
    17.解方程:+1=.
    18.计算:|﹣|﹣(4﹣π)0﹣2sin60°+()﹣1.
    19.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.
    (1)求证:四边形BEDF是平行四边形;
    (2)当四边形BEDF是菱形时,求EF的长.
    20.在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.
    (1)求二次函数的表达式;
    (2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;
    (3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.
    21.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出统计图①和图②.请根据相关信息,解答下列问题:
    (1)图①中a的值为 ;
    (2)求统计的这组初赛成绩数据的平均数、众数和中位数;
    (3)根据这组初赛成绩,由高到低确定9人能进入复赛,请直接写出初赛成绩为1.75m的运动员能否进入复赛.
    22.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.
    (1)打折前甲、乙两种品牌粽子每盒分别为多少元?
    (2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?
    参考答案
    一、选择题(本大题共10小题,每题3分,共30分)
    1.比较2,,的大小,正确的是( )
    A.B.C.D.
    【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.
    解:∵26=64,,,而49<64<125,
    ∴,
    ∴.
    故选:C.
    【点评】此题考查的是实数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.
    2.不等式组有3个整数解,则a的取值范围是( )
    A.﹣6≤a<﹣5B.﹣6<a≤﹣5C.﹣6<a<﹣5D.﹣6≤a≤﹣5
    【分析】根据解不等式组,可得不等式组的解,根据不等式组的解有3个整数解,可得答案.
    解:不等式组,
    由﹣x<﹣1,解得:x>4,
    由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,
    故不等式组的解集为:4<x≤2﹣a,
    由关于x的不等式组有3个整数解,
    解得:7≤2﹣a<8,
    解得:﹣6<a≤﹣5.
    故选:B.
    【点评】本题考查了一元一次不等式组,利用不等式的解得出关于a的不等式是解题关键.
    3.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )
    A.1,,B.,,C.6,7,8D.2,3,4
    【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可.
    解:A、12+()2=()2,故是直角三角形,符合题意;
    B、()2+()2≠()2,故不是直角三角形,不合题意;
    C、62+72≠82,故不是直角三角形,不合题意;
    D、∵22+32≠42,故不是直角三角形,不合题意;
    故选:A.
    【点评】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
    4.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )
    A.2.147×102B.0.2147×103
    C.2.147×1010D.0.2147×1011
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
    解:214.7亿,用科学记数法表示为2.147×1010,
    故选:C.
    【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    5.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为( )
    A.﹣3B.﹣2C.﹣1D.1
    【分析】根据CO=BO可得点C表示的数为﹣2,据此可得a=﹣2﹣1=﹣3.
    解:∵点C在原点的左侧,且CO=BO,
    ∴点C表示的数为﹣2,
    ∴a=﹣2﹣1=﹣3.
    故选:A.
    【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.
    6.若一个凸多边形的内角和为720°,则这个多边形的边数为( )
    A.4B.5C.6D.7
    【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.
    解:设这个多边形的边数为n,则
    (n﹣2)×180°=720°,
    解得n=6,
    故这个多边形为六边形.
    故选:C.
    【点评】本题考查了多边形的内角和定理,关键是根据n边形的内角和为(n﹣2)×180°解答.
    7.如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( )
    A.15B.18C.21D.24
    【分析】利用平行四边形的性质,三角形中位线定理即可解决问题.
    解:∵平行四边形ABCD的周长为36,
    ∴BC+CD=18,
    ∵OD=OB,DE=EC,
    ∴OE+DE=(BC+CD)=9,
    ∵BD=12,
    ∴OD=BD=6,
    ∴△DOE的周长为9+6=15,
    故选:A.
    【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.
    8.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为( )
    A.8B.﹣8C.4D.﹣4
    【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh=k2.根据三角形的面积公式得到S△ABC=AB•yA=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,求出k1﹣k2=8.
    解:∵AB∥x轴,
    ∴A,B两点纵坐标相同.
    设A(a,h),B(b,h),则ah=k1,bh=k2.
    ∵S△ABC=AB•yA=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,
    ∴k1﹣k2=8.
    故选:A.
    【点评】本题考查了反比例函数图象上点的坐标特征,点在函数的图象上,则点的坐标满足函数的解析式.也考查了三角形的面积.
    9.根据圆规作图的痕迹,可以用直尺成功找到三角形外心的是( )
    A.B.
    C.D.
    【分析】三角形的外心是各边垂直平分线的交点,有差评得即可.
    解:三角形的外心的各边垂直平分线的交点,选项C满足条件.
    故选:C.
    【点评】本题考查作图﹣复杂作图,三角形的外心等知识,解题关键是读懂图象信息,理解三角形的外心是各边垂直平分线的交点.
    10.如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为( )
    A.B.C.D.
    【分析】将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点FAP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF和PF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.
    解:∵△ABC为等边三角形,
    ∴BA=BC,
    可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,
    ∴BE=BP=4,AE=PC=5,∠PBE=60°,
    ∴△BPE为等边三角形,
    ∴PE=PB=4,∠BPE=60°,
    在△AEP中,AE=5,AP=3,PE=4,
    ∴AE2=PE2+PA2,
    ∴△APE为直角三角形,且∠APE=90°,
    ∴∠APB=90°+60°=150°.
    ∴∠APF=30°,
    ∴在直角△APF中,AF=AP=,PF=AP=.
    ∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.
    则△ABC的面积是•AB2=•(25+12)=.
    故选:A.
    【点评】本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.
    二、填空题(本大题共6小题,每小题3分,共18分)
    11.计算:(+)(﹣)2= ﹣ .
    【分析】原式变形后,利用平方差公式计算即可求出值.
    解:原式=[(+)(﹣)](﹣)
    =(3﹣2)(﹣)
    =﹣.
    故答案为:﹣.
    【点评】此题考查了二次根式的混合运算,以及平方差公式,熟练掌握公式及运算法则是解本题的关键.
    12.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)= (y﹣1)2(x﹣1)2 .
    【分析】式中x+y;xy多次出现,可引入两个新字母,突出式子特点,设x+y=a,xy=b,将a、b代入原式,进行因式分解,然后再将x+y、xy代入进行因式分解.
    解:令x+y=a,xy=b,
    则(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)
    =(b﹣1)2﹣(a﹣2b)(2﹣a)
    =b2﹣2b+1+a2﹣2a﹣2ab+4b
    =(a2﹣2ab+b2)+2b﹣2a+1
    =(b﹣a)2+2(b﹣a)+1
    =(b﹣a+1)2;
    即原式=(xy﹣x﹣y+1)2=[x(y﹣1)﹣(y﹣1)]2=[(y﹣1)(x﹣1)]2=(y﹣1)2(x﹣1)2.
    故答案为:(y﹣1)2(x﹣1)2.
    【点评】本题考查了多项式的因式分解,因式分解要根据所给多项式的特点,选择适当的方法,对所给多项式进行变形,套用公式,最后看结果是否符合要求.
    13.若式子﹣2在实数范围内有意义,则x的取值范围是 x≥0 .
    【分析】直接利用二次根式有意义的条件进而分析得出答案.
    解:若式子﹣2在实数范围内有意义,
    则x的取值范围是:x≥0.
    故答案为:x≥0.
    【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.
    14.把长方形纸片ABCD沿对角线AC折叠,得到如图所示的图形,AD平分∠B′AC,则∠B′CD= 30° .
    【分析】先根据翻折变换的性质得出∠B′AC=∠BAC,再由AD平分∠B′AC得出∠B′AD=∠DAC,再由矩形的性质得出∠DAC的度数,故可得出∠B′AD的度数,由三角形内角和定理即可得出结论.
    解:∵△AB′C由△ABC翻折而成,
    ∴△AB′C≌△ABC,
    ∴∠∠B′AC=∠BAC.
    ∵AD平分∠B′AC,
    ∴∠B′AD=∠DAC.
    ∵∠BAC+∠DAC=90°,即3∠DAC=90°,
    ∴∠DAC=30°,
    ∴∠B′AD=30°.
    ∵∠B′=∠D=90°,∠AEB′=∠CED,
    ∴∠B′CD=∠B′AD=30°.
    故答案为:30°.
    【点评】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.
    15.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为 13 .
    【分析】根据正方形的性质、直角三角形两个锐角互余以及等量代换可以证得△AFB≌△DEA;然后由全等三角形的对应边相等推知AF=DE、BF=AE,所以EF=AF+AE=13.
    解:∵ABCD是正方形(已知),
    ∴AB=AD,∠ABC=∠BAD=90°,
    ∵BF⊥a于点F,DE⊥a于点E,
    ∴∠AFB=∠DEA=90°,
    又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,
    ∴∠FBA=∠EAD(等量代换);
    在Rt△AFB和Rt△DEA中,
    ∵,
    ∴△AFB≌△DEA(AAS),
    ∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),
    ∴EF=AF+AE=DE+BF=8+5=13.
    故答案为:13.
    【点评】本题考查了全等三角形的判定、正方形的性质.实际上,此题就是将EF的长度转化为与已知长度的线段DE和BF数量关系.
    16.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH= .
    【分析】根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果.
    解:∵四边形ABCD是菱形,
    ∴BO=DO=4,AO=CO,AC⊥BD,
    ∴BD=8,
    ∵S菱形ABCD=AC×BD=24,
    ∴AC=6,
    ∴OC=AC=3,
    ∴BC==5,
    ∵S菱形ABCD=BC×AH=24,
    ∴AH=;
    故答案为:.
    【点评】本题考查了菱形的性质、勾股定理以及菱形面积公式;熟练掌握菱形的性质,由勾股定理求出BC是解题的关键.
    三、解答题(本大题共6小题,共72分)
    17.解方程:+1=.
    【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    解:去分母得:x﹣1+x﹣3=﹣2,
    移项合并得:2x=2,
    解得:x=1,
    检验:把x=1代入得:x﹣3=1﹣3=﹣2≠0,
    则x=1是分式方程的解.
    【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    18.计算:|﹣|﹣(4﹣π)0﹣2sin60°+()﹣1.
    【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.
    解:|﹣|﹣(4﹣π)0﹣2sin60°+()﹣1
    =﹣1﹣2×+4
    =3
    【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题关键.
    19.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.
    (1)求证:四边形BEDF是平行四边形;
    (2)当四边形BEDF是菱形时,求EF的长.
    【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;
    (2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.
    【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,
    ∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,
    ∴∠OBE=∠ODF,
    在△BOE和△DOF中,,
    ∴△BOE≌△DOF(ASA),
    ∴EO=FO,
    ∴四边形BEDF是平行四边形;
    (2)解:当四边形BEDF是菱形时,BD⊥EF,
    设BE=x,则 DE=x,AE=6﹣x,
    在Rt△ADE中,DE2=AD2+AE2,
    ∴x2=42+(6﹣x)2,
    解得:x=,
    ∵BD==2,
    ∴OB=BD=,
    ∵BD⊥EF,
    ∴EO==,
    ∴EF=2EO=.
    【点评】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.
    20.在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.
    (1)求二次函数的表达式;
    (2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;
    (3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.
    【分析】(1)根据题意得到B、C两点的坐标,设抛物线的解析式为y=(x﹣4)(x﹣m),将点C的坐标代入求得m的值即可;
    (2)过点D作DF⊥x轴,交BC与点F,设D(x,x2﹣x﹣2),则DF=﹣x2+2x,然后列出S与x的关系式,最后利用配方法求得其最大值即可;
    (3)根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点E,EA=EC=EB=,过D作y轴的垂线,垂足为R,交AC的延线于G,设D(x,x2﹣x﹣2),则DR=x,CR=﹣x2+x,最后,分为∠DCM=2∠BAC和∠MDC=2∠BAC两种情况列方程求解即可.
    解:(1)把x=0代y=x﹣2得y=﹣2,
    ∴C(0,﹣2).
    把y=0代y=x﹣2得x=4,
    ∴B(4,0),
    设抛物线的解析式为y=(x﹣4)(x﹣m),将C(0,﹣2)代入得:2m=﹣2,解得:m=﹣1,
    ∴A(﹣1,0).
    ∴抛物线的解析式y=(x﹣4)(x+1),即y=x2﹣x﹣2.
    (2)如图所示:过点D作DF⊥x轴,交BC与点F.
    设D(x,x2﹣x﹣2),则F(x,x﹣2),DF=(x﹣2)﹣(x2﹣x﹣2)=﹣x2+2x.
    ∴S△BCD=OB•DF=×4×(﹣x2+2x)=﹣x2+4x=﹣(x2﹣4x+4﹣4)=﹣(x﹣2)2+4.
    ∴当x=2时,S有最大值,最大值为4.
    (3)如图所示:过点D作DR⊥y垂足为R,DR交BC与点G.
    ∵A(﹣1,0),B(4,0),C(0,﹣2),
    ∴AC=,BC=2,AB=5,
    ∴AC2+BC2=AB2,
    ∴△ABC为直角三角形.
    取AB的中点E,连接CE,则CE=BE,
    ∴∠OEC=2∠ABC.
    ∴tan∠OEC==.
    当∠MCD=2∠ABC时,则tan∠CDR=tan∠ABC=.
    设D(x,x2﹣x﹣2),则DR=x,CR=﹣x2+x.
    ∴=,解得:x=0(舍去)或x=2.
    ∴点D的横坐标为2.
    当∠CDM=2∠ABC时,设MD=3k,CM=4k,CD=5k.
    ∵tan∠MGD=,
    ∴GM=6k,GD=3k,
    ∴GC=MG﹣CM=2k,
    ∴GR=k,CR=k.
    ∴RD=3k﹣k=k.
    ∴==,整理得:﹣x2+x=0,解得:x=0(舍去)或x=.
    ∴点D的横坐标为.
    综上所述,当点D的横坐标为2或.
    【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求函数的解析式,相似三角形的判定和性质,解直角三角形,直角三角形的性质,正确的作出辅助线是解题的关键.
    21.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出统计图①和图②.请根据相关信息,解答下列问题:
    (1)图①中a的值为 25 ;
    (2)求统计的这组初赛成绩数据的平均数、众数和中位数;
    (3)根据这组初赛成绩,由高到低确定9人能进入复赛,请直接写出初赛成绩为1.75m的运动员能否进入复赛.
    【分析】(1)根据扇形统计图中的数据可以求得a的值;
    (2)根据条形统计图中的数据可以得到该组数据的众数、中位数和平均数;
    (3)根据条形统计图中的数据可以解答本题.
    解:(1)a%=1﹣10%﹣20%﹣30%﹣15%=25%,
    即a的值是25.
    故答案为:25,
    (2)由条形统计图可知,
    这组平均数是:=1.71(m),
    在这组数据中,1.75出现了6次,出现的次数最多,
    则这组数据的众数是1.75m,
    把这些数从小到大的顺序排列,其中处于中间位置的两个数都是1.70,
    则中位数是=1.70(m),
    (3)初赛成绩为1.75m的运动员能进入复赛,
    理由:由条形统计图可知前9名的成绩,最低是1.75m,故初赛成绩为1.75m的运动员能进入复赛.
    【点评】本题考查条形统计图、扇形统计图、加权平均数、众数、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.
    22.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.
    (1)打折前甲、乙两种品牌粽子每盒分别为多少元?
    (2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?
    【分析】(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
    (2)根据节省钱数=甲品牌粽子节省的钱数+乙品牌粽子节省的钱数,即可求出节省的钱数.
    解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,
    根据题意得:,
    解得:.
    答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.
    (2)80×40×(1﹣80%)+100×120×(1﹣75%)=3640(元).
    答:打折后购买这批粽子比不打折节省了3640元.
    【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.
    相关试卷

    2023-2024学年河南省南阳市邓州市九年级(上)期末数学试卷(含解析): 这是一份2023-2024学年河南省南阳市邓州市九年级(上)期末数学试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年河南省南阳市邓州市八年级(上)期中数学试卷(含解析): 这是一份2023-2024学年河南省南阳市邓州市八年级(上)期中数学试卷(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河南省南阳市邓州市2023-2024学年九年级上册期中数学试题(含解析): 这是一份河南省南阳市邓州市2023-2024学年九年级上册期中数学试题(含解析),共17页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map