- 期中模拟卷02(湖南长沙,测试范围:人教版第11-13章)2023-2024学年八年级数学上学期期中模拟考试试题及答案 试卷 1 次下载
- 期中模拟卷02(人教版11~13章,测试范围:三角形、全等三角形、轴对称)2023-2024学年八年级数学上学期期中模拟考试试题及答案 试卷 3 次下载
- 期中模拟卷02(上海,测试范围:沪教版第16-18章)2023-2024学年八年级数学上学期期中模拟考试试题及答案 试卷 5 次下载
- 期中模拟卷02(浙江)(浙教版八上第1~2章:三角形初步、特殊三角形)2023-2024学年八年级数学上学期期中模拟考试试题及答案 试卷 3 次下载
- 期中模拟卷02(重庆,含部分中考题型)2023-2024学年八年级数学上学期期中模拟考试试题及答案 试卷 1 次下载
期中模拟卷02(江苏)(苏科版八上第1~3章:全等三角形、轴对称、勾股定理)2023-2024学年八年级数学上学期期中模拟考试试题及答案
展开2023-2024学年上学期期中模拟考试
八年级数学
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
B | C | C | A | C | B | C | C |
9.15:01 10.16cm或17cm 11.Rt△BCD ≌ Rt△CBE;HL
12.36° 13.6或8 14. 5
15.2:3:4 16.
17.(6分)
解:(1)∵4(x﹣1)2=100,
∴(x﹣1)2=25.
∴x﹣1=±5.
∴x=6或﹣4·····························································3分
(2)∵(x+2)3=﹣27,
∴x+2=﹣3.
∴x=﹣5.································································6分
18.(4分)
解:如图所示:(答案不唯一,每种方案1分)
19.(8分)
解:(1)∵DE是AB的垂直平分线,
∴EA=EB.·····································································2分
∵FG是AC的垂直平分线,
∴GA=GC.
∴BC=BE+EG+CG=AE+EG+AG=△AEG周长=10;·································4分
(2)解:∵∠BAC=128°,
∴∠B+∠C=180°﹣∠BAC=52°,
∵AB的垂直平分线分别交AB、BC于点D、E,
∴AE=BE,AG=CG,
∴∠BAE=∠B,∠CAG=∠C,····················································6分
∴∠BAE+∠CAG=∠B+∠C=52°,
∴∠EAG=∠BAC﹣(∠BAE+∠CAG)=76°.······································8分
20.(8分)
解:(1)设AB长为x米,则绳子长为(x+1)米,·····································2分
AE的长度为(x﹣1)米.··························································4分
故答案为:(x+1);(x﹣1);
(2)在Rt△ACE中,AC=x米,
AE=(x﹣1)米,CE=8米,
由勾股定理可得,(x﹣1)2+82=(x+1)2,
解得:x=16.
答:旗杆的高度为16米.··························································8分
21.(8分)
解:(1)∵AD=CD,
∴∠A=∠ACD,
∵CD平分∠ACB,
∴∠ACB=2∠ACD,
∴∠ACB=2∠A,
∵AB=AC,
∴∠B=∠ACB=2∠A,
∵∠A+∠B+∠ACB=180°,
∴5∠A=180°,
∴∠A=36°,
∴∠A的度数为36°;································································4分
(2)△ADE,△CDB,△ADC,△DEC是等腰三角形,
理由:∵DE∥BC,
∴∠ADE=∠B,∠AED=∠ACB,
∵∠B=∠ACB,
∴∠ADE=∠AED,
∴AD=AE,
∴△ADE是等腰三角形;······························································5分
∵DE∥BC,
∴∠EDC=∠DCB,
∵CD平分∠ACB,
∴∠ACD=∠DCB,
∴∠EDC=∠ACD,
∴ED=EC,
∴△EDC是等腰三角形;······························································6分
∵AD=CD,
∴△ADC是等腰三角形;······························································7分
∵∠CDB=∠A+∠ACD,∠A=∠ACD,
∴∠CDB=2∠A,
∵∠B=2∠A,
∴∠B=∠CDB,
∴CD=CB,
∴△CDB是等腰三角形,
∴△ADE,△CDB,△ADC,△DEC是等腰三角形.·······································8分
22.(8分)
解:(1)A城受到这次台风的影响,
理由:由A点向BC作垂线,垂足为M,
在Rt△ABM中,∠ABM=30°,AB=600km,则AM=300km,
因为300<500,所以A城要受台风影响;···············································4分
(2)设BC上点D,DA=500千米,则还有一点G,有
AG=500千米.
因为DA=AG,所以△ADG是等腰三角形,
因为AM⊥BC,所以AM是DG的垂直平分线,MD=GM,
在Rt△ADM中,DA=500千米,AM=300千米,
由勾股定理得,MD400(千米),
则DG=2DM=800千米,
遭受台风影响的时间是:t=800÷200=4(小时),
答:A城遭受这次台风影响时间为4小时.··············································8分
23.(8分)
(1)解:如图1中,设∠C=x.
∵∠ABC=2∠C,
∴∠ABC=2x,
∵BD平分∠ABC,
∴∠ABD=∠CBD=x,
∵AB=BD,
∴∠A=∠ADB=∠DBC+∠C=2x,
∵∠A+∠ABC+∠C=180°,
∴2x+2x+x=180°,
∴x=36°,
∴∠A=2x=72°,
故答案为:72.······································································2分
(2)证明:如图1中,∵∠ABD=∠DBC=∠C,
∴BD=CD,
在△ABD和△ECD中,
,
∴△ABD≌△ECD(AAS),
∴AB=EC.··········································································4分
(3)证明:如图2中,延长BD到T,使得CD=CT.
∵CD=CT,
∴∠T=∠CDT=∠ADB,
∵BD=CD,
∴BD=CT,
在△ABD和△ECT中,
,
∴△ABD≌△ECT(AAS),
∴AB=EC.··········································································8分
24.(8分)
(1)解:∵AO平分∠BAD,
∴∠DAO=∠OAB,
∵BO平分∠EOA,
∴∠EBO=∠OBA,
∵∠ACB=50°,
∴∠CBA+∠CAB=130°,
∴∠EBA+∠BAD=360°﹣130°=230°,
∴∠OBA+∠OAB=115°,
∴∠AOB=360°﹣50°﹣115°﹣130°=65°;··········································2分
(2)解:过O点作OM⊥AD于M,ON⊥BE于N,OP⊥AB于P,
∵AO,BO分别平分∠DAB,∠EBA,
∴OM=OP,OP=ON,
∴OM=ON,
∴CO平分∠ACB,
∵∠ACB=50°,
∴∠BCK=∠ACK=25°;·····························································4分
(3)证明:∵∠BAC=105°,∠ACB=50°,
∴∠ABC=25°,
∵∠KCB=25°,
∴∠KBC=∠KCE,
∴KB=KC,
过A点作AH∥BC交CO于H,
∴∠AHK=∠KCB,∠HAK=∠KBC,
∴∠AHK=∠HAK,
∴KA=KH,
∴AB=CH,
∵∠AHK=∠ACH,
∴AH=AC,
∵AF⊥CO,
∴HF=CF,
∴CH=2CF,
∴AB=CH=2CF.·································································8分
25.(10分)
解:(1)DE2=BD2+EC2;···························································2分
(2)关系式DE2=BD2+EC2仍然成立.
证明:将△ADB沿直线AD对折,得△AFD,连FE
∴△AFD≌△ABD,·································································3分
∴AF=AB,FD=DB,
∠FAD=∠BAD,∠AFD=∠ABD,
又∵AB=AC,
∴AF=AC,
∵∠FAE=∠FAD+∠DAE=∠FAD+45°,
∠EAC=∠BAC﹣∠BAE=90°﹣(∠DAE﹣∠DAB)=45°+∠DAB,
∴∠FAE=∠EAC,··································································5分
又∵AE=AE,
∴△AFE≌△ACE,
∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°﹣∠ABC=135°
∴∠DFE=∠AFD﹣∠AFE=135°﹣45°=90°,
∴在Rt△DFE中,DF2+FE2=DE2,
即DE2=BD2+EC2;··································································7分
解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.
∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,
∵∠ABC=45°,
∴∠TBC=∠TBD=90°,
∵∠DAE=45°,
∴∠DAT=∠DAE,
∵AD=AD,
∴△DAT≌△DAE(SAS),
∴DT=DE,
∵DT2=DB2+EC2,
∴DE2=BD2+EC2;
(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.
如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,
可得△CFE≌△CBE,△DCF≌△DCA.
∴AD=DF,EF=BE.
∴∠DFE=∠1+∠2=∠A+∠B=120°.
若使△DFE为等腰三角形,只需DF=EF,即AD=BE,
∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.········10分
期中模拟卷(湖北武汉)(人教版八上第11~13章:三角形初步、全等三角形及轴对称,按最新中考信息制作)2023-2024学年八年级数学上学期期中模拟考试试题及答案: 这是一份期中模拟卷(湖北武汉)(人教版八上第11~13章:三角形初步、全等三角形及轴对称,按最新中考信息制作)2023-2024学年八年级数学上学期期中模拟考试试题及答案,文件包含期中模拟卷01全解全析docx、期中模拟卷01考试版测试范围第11-13章人教版A4版docx、期中模拟卷01参考答案docx、期中模拟卷01答题卡A4版docx等4份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
期中模拟卷02(浙江)(浙教版八上第1~2章:三角形初步、特殊三角形)2023-2024学年八年级数学上学期期中模拟考试试题及答案: 这是一份期中模拟卷02(浙江)(浙教版八上第1~2章:三角形初步、特殊三角形)2023-2024学年八年级数学上学期期中模拟考试试题及答案,文件包含期中模拟卷02全解全析docx、期中模拟卷02考试版测试范围第1-2章浙教版A4版docx、期中模拟卷02参考答案docx、期中模拟卷02答题卡A4版docx等4份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
期中模拟卷02(人教版11~13章,测试范围:三角形、全等三角形、轴对称)2023-2024学年八年级数学上学期期中模拟考试试题及答案: 这是一份期中模拟卷02(人教版11~13章,测试范围:三角形、全等三角形、轴对称)2023-2024学年八年级数学上学期期中模拟考试试题及答案,文件包含数学考试版A4docx、数学考试版A3docx、数学答题卡docx、数学全解全析docx、数学参考答案docx等5份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。