所属成套资源:2024年高考数学第一轮复习专题训练(附单独答案解析)
2024年数学高考大一轮复习第十二章 §12.3 绝对值不等式(附答单独案解析)
展开这是一份2024年数学高考大一轮复习第十二章 §12.3 绝对值不等式(附答单独案解析),共6页。
§12.3 绝对值不等式
考试要求 1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R);|a-c|≤|a-b|+|b-c|(a,b,c∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c,|ax+b|≥c;|x-a|+|x-b|≥c,|x-a|+|x-b|≤c.
知识梳理
1.绝对值不等式的解法
(1)含绝对值的不等式|x|<a与|x|>a的解集
不等式 | a>0 | a=0 | a<0 |
|x|<a |
| ∅ | ∅ |
|x|>a | (-∞,-a)∪(a,+∞) | (-∞,0)∪(0,+∞) | R |
(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法
①|ax+b|≤c⇔________________________.
②|ax+b|≥c⇔________________________.
(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法
①利用绝对值不等式的几何意义求解,体现了数形结合的思想.
②利用“零点分段法”求解,体现了分类讨论的思想.
③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.
2.含有绝对值的不等式的性质
(1)如果a,b是实数,则________≤|a±b|≤________.
(2)如果a,b,c是实数,那么______________,当且仅当________________时,等号成立.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)若|x|>c的解集为R,则c≤0.( )
(2)不等式|x-1|+|x+2|<2的解集为∅.( )
(3)对|a+b|≥|a|-|b|当且仅当a>b>0时等号成立.( )
(4)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.( )
教材改编题
1.不等式3≤|5-2x|<9的解集为( )
A.[-2,1)∪[4,7) B.(-2,1]∪(4,7]
C.(-2,-1]∪[4,7) D.(-2,1]∪[4,7)
2.不等式|x-1|-|x-5|<2的解集为________.
3.设a,b∈R,|a-b|>2,则关于实数x的不等式|x-a|+|x-b|>2的解集是________.
题型一 绝对值不等式的解法
例1 (2021·全国乙卷)已知函数f(x)=|x-a|+|x+3|.
(1)当a=1时,求不等式f(x)≥6的解集;
(2)若f(x)>-a,求a的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思维升华 解绝对值不等式的基本方法
(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式.
(2)当不等式两端均为正数时,可通过两边平方的方法,转化为不含绝对值符号的普通不等式.
(3)利用绝对值的几何意义,数形结合求解.
跟踪训练1 已知函数f(x)=-.
(1)画出函数y=f(x)的图象;
(2)解不等式≥1.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
题型二 利用绝对值不等式的性质求最值
例2 已知函数f(x)=|2x+1|+|x-4|.
(1)解不等式f(x)≤6;
(2)若不等式f(x)+|x-4|<a2-8a有解,求实数a的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思维升华 求含绝对值函数的最值时,常用的方法有三种
(1)利用绝对值的几何意义.
(2)利用绝对值的三角不等式,即|a|+|b|≥|a±b|≥||a|-|b||.
(3)利用零点分段法,转化为分段函数求最值.
跟踪训练2 已知函数f(x)=-,m∈R.
(1)若m=3,求不等式f(x)>1的解集;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)若对∀x∈R,不等式f(x)+2≥4都成立,求实数m的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
题型三 绝对值不等式的综合应用
例3 设函数f(x)=|2x+1|+|x-1|.
(1)画出y=f(x)的图象;
(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思维升华 (1)解决与绝对值有关的综合问题的关键是去掉绝对值,化为分段函数.
(2)数形结合是解决与绝对值有关的综合问题的常用方法.
跟踪训练3 (2023·成都联考)已知函数f(x)=|x-2|-a|x+1|.
(1)当a=1时,求不等式f(x)<x的解集;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)当a=2时,若关于x的不等式f(x)>m+1恰有2个整数解,求实数m的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
相关试卷
这是一份2024年数学高考大一轮复习第十二章 §12.4 不等式的证明(附答单独案解析),共4页。
这是一份2024年数学高考大一轮复习第十二章 §12.3 绝对值不等式(附答单独案解析),共3页。
这是一份2024年数学高考大一轮复习第十二章 §12.2 参数方程(附答单独案解析),共4页。