高考数学大一轮复习第十章 算法、统计与统计案例、概率
展开第5节 随机事件的概率
考纲要求 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别;2.了解两个互斥事件的概率加法公式.
知识梳理
1.概率与频率
(1)频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.
(2)概率:对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).
2.事件的关系与运算
定义
符号表示
包含关系
如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)
B⊇A(或A⊆B)
相等关系
若B⊇A且A⊇B
A=B
并事件(和事件)
若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)
A∪B(或A+B)
交事件(积事件)
若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)
A∩B(或AB)
互斥事件
若A∩B为不可能事件,则称事件A与事件B互斥
A∩B=∅
对立事件
若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件
A∩B=∅
P(A∪B)=1
3.概率的几个基本性质
(1)概率的取值范围:0≤P(A)≤1.
(2)必然事件的概率P(E)=1.
(3)不可能事件的概率P(F)=0.
(4)互斥事件概率的加法公式
①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).
②若事件B与事件A互为对立事件,则P(A)=1-P(B).
1.从集合的角度理解互斥事件和对立事件
(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.
(2)事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.
2.概率加法公式的推广
当一个事件包含多个结果且各个结果彼此互斥时, 要用到概率加法公式的推广,即
P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).
诊断自测
1.判断下列结论正误(在括号内打“√”或“×”)
(1)事件发生的频率与概率是相同的.( )
(2)在大量的重复实验中,概率是频率的稳定值.( )
(3)若随机事件A发生的概率为P(A),则0≤P(A)≤1.( )
(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.( )
答案 (1)× (2)√ (3)√ (4)×
2.容量为20的样本数据,分组后的频数如下表:
分组
[10,20)
[20,30)
[30,40)
[40,50)
[50,60)
[60,70]
频数
2
3
4
5
4
2
则样本数据落在区间[10,40)的频率为( )
A.0.35 B.0.45 C.0.55 D.0.65
答案 B
解析 由表知[10,40)的频数为2+3+4=9,
所以样本数据落在区间[10,40)的频率为=0.45.
3.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少有一名女生”与事件“全是男生”( )
A.是互斥事件,不是对立事件
B.是对立事件,不是互斥事件
C.既是互斥事件,也是对立事件
D.既不是互斥事件也不是对立事件
答案 C
解析 “至少有一名女生”包括“一男一女”和“两名女生”两种情况,这两种情况再加上“全是男生”构成全集,且不能同时发生,故“至少有一名女生”与“全是男生”既是互斥事件,也是对立事件.
4.(2018·全国Ⅲ卷)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )
A.0.3 B.0.4 C.0.6 D.0.7
答案 B
解析 某群体中的成员分为只用现金支付、既用现金支付也用非现金支付、不用现金支付,它们彼此是互斥事件,所以不用现金支付的概率为1-(0.15+0.45)=0.4.
5.(2020·全国Ⅱ卷)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1 200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1 600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )
A.10名 B.18名 C.24名 D.32名
答案 B
解析 由题意,第二天完成积压订单及当日订单的配货的概率不小于0.95,即第二天确保完成新订单1 600份,减去超市每天能完成的1 200份,加上积压的500份,共有1 600-1 200+500=900(份),至少需要志愿者900÷50=18(名).
6.抛掷一枚均匀的骰子(骰子的六个面上分别标有1,2,3,4,5,6个点)一次,观察掷出向上的点数,设事件A为掷出向上为偶数点,事件B为掷出向上为3点,则P(A∪B)=________.
答案
解析 事件A为掷出向上为偶数点,所以P(A)=.事件B为掷出向上为3点,所以P(B)=,又事件A,B是互斥事件,所以P(A∪B)=P(A)+P(B)=.
考点一 随机事件的关系
1.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是( )
A.至多有一张移动卡 B.恰有一张移动卡
C.都不是移动卡 D.至少有一张移动卡
答案 A
解析 由题意知“2张全是移动卡”的对立事件是“至多有一张移动卡”,又1-=,故“至多有一张移动卡”的概率是.
2.口袋里装有1红,2白,3黄共6个除颜色外完全相同的小球,从中取出两个球,事件A=“取出的两个球同色”,B=“取出的两个球中至少有一个黄球”,C=“取出的两个球至少有一个白球”,D=“取出的两个球不同色”,E=“取出的两个球中至多有一个白球”.下列判断中正确的序号为________.
①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件;④P(C∪E)=1.
答案 ①④
解析 当取出的两个球为一黄一白时,B与C都发生,②不正确;当取出的两个球中恰有一个白球时,事件C与E都发生,③不正确;显然A与D是对立事件,①正确;C∪E为必然事件,P(C∪E)=1,④正确.
3.下列命题:
①对立事件一定是互斥事件;
②若A,B为两个事件,则P(A∪B)=P(A)+P(B);
③若事件A,B,C两两互斥,则P(A)+P(B)+P(C)=1;
④事件A,B满足P(A)+P(B)=1,则A,B是对立事件.
其中错误的是________.
答案 ②③④
解析 对于①,对立事件是互斥事件中其中一个不发生,另一个必然发生的事件,所以正确.对于②,只有互斥事件才满足P(A∪B)=P(A)+P(B),不是任意事件都满足,故②错误.对于③,若A、B、C三事件两两互斥,不一定(A∪B)是C的对立事件,则P(A)+P(B)+P(C)=1不一定成立,③错误;对于④,对立事件的概率之和为1,但概率之和为1的两个事件不一定是对立事件,④错误.
感悟升华 1.准确把握互斥事件与对立事件的概念:(1)互斥事件是不可能同时发生的事件,但也可以同时不发生;(2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.
2.判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.
考点二 随机事件的频率与概率
【例1】 (2020·全国Ⅰ卷)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
甲分厂产品等级的频数分布表
等级
A
B
C
D
频数
40
20
20
20
乙分厂产品等级的频数分布表
等级
A
B
C
D
频数
28
17
34
21
(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;
(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?
解 (1)由试加工产品等级的频数分布表知,
甲分厂加工出来的一件产品为A级品的概率的估计值为=0.4;
乙分厂加工出来的一件产品为A级品的概率的估计值为=0.28.
(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为
利润
65
25
-5
-75
频数
40
20
20
20
因此甲分厂加工出来的100件产品的平均利润为
=15.
由数据知乙分厂加工出来的100件产品利润的频数分布表为
利润
70
30
0
-70
频数
28
17
34
21
因此乙分厂加工出来的100件产品的平均利润为
=10.
比较甲、乙两分厂加工的产品的平均利润,厂家应选甲分厂承接加工业务.
感悟升华 1.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.
2.利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率.
【训练1】 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温
[10,15)
[15,20)
[20,25)
[25,30)
[30,35)
[35,40]
天数
2
16
36
25
7
4
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为=0.6.
所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.
(2)当这种酸奶一天的进货量为450瓶时,
若最高气温低于20,则Y=200×6+(450-200)×2-450×4=-100;
若最高气温位于区间[20,25),则Y=300×6+(450-300)×2-450×4=300;
若最高气温不低于25,则Y=450×(6-4)=900,
所以,利润Y的所有可能值为-100,300,900.
Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为=0.8.
因此Y大于零的概率的估计值为0.8.
考点三 互斥事件与对立事件的概率
【例2】 经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:
排队人数
0
1
2
3
4
5人及5人以上
概率
0.1
0.16
0.3
0.3
0.1
0.04
求:(1)至多2人排队等候的概率;
(2)至少3人排队等候的概率.
解 记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥.
(1)记“至多2人排队等候”为事件G,则G=A∪B∪C,
所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)
=0.1+0.16+0.3=0.56.
(2)法一 记“至少3人排队等候”为事件H,
则H=D∪E∪F,
所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.
法二 记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.
感悟升华 1.求解本题的关键是正确判断各事件之间的关系,以及把所求事件用已知概率的事件表示出来.
2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P()求解.当题目涉及“至多”、“至少”型问题,多考虑间接法.
【训练2】 (1)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为( )
A.0.95 B.0.97 C.0.92 D.0.08
(2)甲、乙两人下棋,两人下成和棋的概率是,乙获胜的概率是,则乙不输的概率是________.
答案 (1)C (2)
解析 (1)记“抽检的产品是甲级品”为事件A,是“乙级品”为事件B,是“丙级品”为事件C,这三个事件彼此互斥,因而所求概率为P(A)=1-P(B)-P(C)=1-5%-3%=92%=0.92.
(2)乙不输包含两人下成和棋和乙获胜,且它们是互斥事件,所以乙不输的概率为+=.
A级 基础巩固
一、选择题
1.下列说法正确的是( )
A.甲、乙二人比赛,甲胜的概率为,则比赛5场,甲胜3场
B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈
C.随机试验的频率与概率相等
D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90%
答案 D
解析 由概率的意义知D正确.
2.设事件A,B,已知P(A)=,P(B)=,P(A∪B)=,则A,B之间的关系一定为( )
A.两个任意事件 B.互斥事件
C.非互斥事件 D.对立事件
答案 B
解析 因为P(A)+P(B)=+==P(A∪B),所以A,B之间的关系一定为互斥事件.
3.从正五边形的五个顶点中,随机选取三个顶点连成三角形,对于事件A:“这个三角形是等腰三角形”,下列推断正确的是( )
A.事件A发生的概率是
B.事件A发生的概率是
C.事件A是不可能事件
D.事件A是必然事件
答案 D
解析 从正五边形的五个顶点中,随机选取三个顶点连成三角形都是等腰三角形,故事件A是必然事件.
4.(2020·太原模拟)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,则P()=( )
A.0.5 B.0.1 C.0.7 D.0.8
答案 A
解析 ∵随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,∴P(A)=P(A∪B)-P(B)=0.7-0.2=0.5,∴P()=1-P(A)=1-0.5=0.5.
5.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率是,都是白子的概率是.则从中任意取出2粒恰好是同一色的概率是( )
A. B. C. D.1
答案 C
解析 设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A与B互斥.
由于P(A)=,P(B)=.
所以P(C)=P(A)+P(B)=+=.
6.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )
A.“至少有一个黑球”与“都是黑球”
B.“至少有一个黑球”与“都是红球”
C.“至少有一个黑球”与“至少有一个红球”
D.“恰有一个黑球”与“恰有两个黑球”
答案 D
解析 A中的两个事件是包含关系,不是互斥事件;B中的两个事件是对立事件;C中的两个事件都包含“一个黑球一个红球”的事件,不是互斥关系;D中的两个事件是互斥而不对立的关系.
7.根据某医疗研究所的调查,某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现有一血液为A型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为( )
A.15% B.20%
C.45% D.65%
答案 D
解析 因为某地区居民血型的分布为O型50%,A型15%,B型30%,AB型5%,现在能为A型病人输血的有O型和A型,故为病人输血的概率为50%+15%=65%,故选D.
8.抛掷一个质地均匀的骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+发生的概率为( )
A. B. C. D.
答案 C
解析 掷一个骰子的试验有6种可能结果,依题意P(A)==,P(B)==,所以P()=1-P(B)=1-=,
因为表示“出现5点或6点”的事件,所以事件A与互斥,从而P(A+)=P(A)+P()=+=.
二、填空题
9.“键盘侠”一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象.某地新闻栏目对该地区群众对“键盘侠”的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9 600人,则可估计该地区对“键盘侠”持反对态度的有________人.
答案 6 912
解析 在随机抽取的50人中,持反对态度的频率为1-=,则可估计该地区对“键盘侠”持反对态度的有9 600×=6 912(人).
10.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的不是一等品”的概率为________.
答案 0.35
解析 事件“抽到的产品不是一等品”与事件A是对立事件,由于P(A)=0.65,所以由对立事件的概率公式得“抽到的产品不是一等品”的概率为P()=1-P(A)=1-0.65=0.35.
11.我国西部一个地区的年降水量在下列区间内的概率如下表所示:
年降水量(mm)
(100,150)
(150,200)
(200,250)
(250,300)
概率
0.21
0.16
0.13
0.12
则年降水量在(200,300)(mm)范围内的概率是________.
答案 0.25
解析 设年降水量在(200,300)、(200,250)、(250,300)的事件分别为A、B、C,则A=B∪C,且B、C为互斥事件,所以P(A)=P(B)+P(C)=0.13+0.12=0.25.
12.(2021·郑州调研)一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红玻璃球的概率为,取得两个绿玻璃球的概率为,则取得两个同色玻璃球的概率为________;至少取得一个红玻璃球的概率为________.
答案
解析 由于“取得两个红玻璃球”与“取得两个绿玻璃球”是互斥事件,取得两个同色玻璃球,只需两互斥事件有一个发生即可,因而取得两个同色玻璃球的概率为P=+=.
由于事件A“至少取得一个红玻璃球”与事件B“取得两个绿玻璃球”是对立事件,则至少取得一个红玻璃球的概率为P(A)=1-P(B)=1-=.
B级 能力提升
13.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是( )
A. B.
C. D.
答案 D
解析 由题意可得
即解得 14.据统计,某食品企业在一个月内被消费者投诉次数为0,1,2的概率分别为0.4,0.5,0.1.则该企业在一个月内被消费者投诉不超过1次的概率为________.
答案 0.9
解析 法一 记“该食品企业在一个月内被消费者投诉的次数为0”为事件A,“该食品企业在一个月内被消费者投诉的次数为1”为事件B,“该食品企业在一个月内被消费者投诉的次数为2”为事件C,“该食品企业在一个月内被消费者投诉的次数不超过1”为事件D,而事件D包含事件A与B,所以P(D)=P(A)+P(B)=0.4+0.5=0.9.
法二 记“该食品企业在一个月内被消费者投诉的次数为2”为事件C,“该食品企业在一个月内被消费者投诉不超过1次”为事件D,由题意知C和D是对立事件,所以P(D)=1-P(C)=1-0.1=0.9.
15.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中乙的一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是________.
答案
解析 设被污损的数字为x,则
甲=(88+89+90+91+92)=90,
乙=(83+83+87+99+90+x),
若甲=乙,则x=8.
若甲>乙,则x可以为0,1,2,3,4,5,6,7,
故p==.
16.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.
现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________.
答案
解析 “至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为
p==.
“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.
故他属于不超过2个小组的概率是
p=1-=.
2024年数学高考大一轮复习第十章 算法初步、统计与统计案例、概率: 这是一份2024年数学高考大一轮复习第十章 算法初步、统计与统计案例、概率,文件包含第4节变量间的相关关系与统计案例doc、第3节用样本估计总体doc、第6节古典概型与几何概型doc、第1节算法与程序框图doc、第5节随机事件的概率doc、第2节随机抽样doc等6份试卷配套教学资源,其中试卷共115页, 欢迎下载使用。
2024高考数学大一轮复习Word版题库(人教A版文)第十章 算法初步、统计与统计案例、概率 第5节 随机事件的概率: 这是一份2024高考数学大一轮复习Word版题库(人教A版文)第十章 算法初步、统计与统计案例、概率 第5节 随机事件的概率,共15页。试卷主要包含了事件的关系与运算,概率的几个基本性质等内容,欢迎下载使用。
2024高考数学大一轮复习Word版题库(人教A版文)第十章 算法初步、统计与统计案例、概率 第4节 变量间的相关关系与统计案例: 这是一份2024高考数学大一轮复习Word版题库(人教A版文)第十章 算法初步、统计与统计案例、概率 第4节 变量间的相关关系与统计案例,共24页。试卷主要包含了线性回归方程,回归分析,独立性检验,08,eq \r≈14等内容,欢迎下载使用。