|教案下载
终身会员
搜索
    上传资料 赚现金
    备战2024新高考-高中数学二轮重难点专题15-三角形中的范围和最值问题
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      2024新高考二轮重难点专题15:三角形中的范围和最值问题(原卷版).docx
    • 解析
      2024新高考二轮重难点专题15:三角形中的范围和最值问题(解析版).docx
    备战2024新高考-高中数学二轮重难点专题15-三角形中的范围和最值问题01
    备战2024新高考-高中数学二轮重难点专题15-三角形中的范围和最值问题02
    备战2024新高考-高中数学二轮重难点专题15-三角形中的范围和最值问题03
    备战2024新高考-高中数学二轮重难点专题15-三角形中的范围和最值问题01
    备战2024新高考-高中数学二轮重难点专题15-三角形中的范围和最值问题02
    备战2024新高考-高中数学二轮重难点专题15-三角形中的范围和最值问题03
    还剩8页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    备战2024新高考-高中数学二轮重难点专题15-三角形中的范围和最值问题

    展开
    这是一份备战2024新高考-高中数学二轮重难点专题15-三角形中的范围和最值问题,文件包含2024新高考二轮重难点专题15三角形中的范围和最值问题原卷版docx、2024新高考二轮重难点专题15三角形中的范围和最值问题解析版docx等2份教案配套教学资源,其中教案共33页, 欢迎下载使用。

    2024高考数学二轮复习

    重难点专题15

    三角形中的范围和最值问题

    【方法技巧与总结】

    1.在解三角形专题中,求其范围最值的问题,一直都是这部分内容的重点、难点。解决这类问题,通常有下列五种解题技巧:

    (1)利用基本不等式求范围或最值;

    (2)利用三角函数求范围或最值;

    (3)利用三角形中的不等关系求范围或最值;

    (4)根据三角形解的个数求范围或最值;

    (5)利用二次函数求范围或最值.

    要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,要尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.

    2.解三角形中的范围与最值问题常见题型:

    (1)求角的最值;

    (2)求边和周长的最值及范围;

    (3)求面积的最值和范围.

    【题型归纳目录】

    题型一:周长问题

    题型二:面积问题

    题型三:长度问题

    题型四:转化为角范围问题

    题型五: 倍角问题

    题型 角平分线问题

    题型 中线问题

    题型 四心问题

    题型 坐标法

    题型 隐圆问题

    题型十一两边夹问题

    题型十二与正切有关的最值问题

    题型十三最大角问题

    题型十四费马点、布洛卡点、拿破仑三角形问题

    题型十五托勒密定理及旋转相似

    题型十六三角形中的平方问题

    题型十七等面积法、张角定理

    【典例例题】

    题型一:周长问题

    1.设的内角ABC的对边分别为abc,设

    (1)A

    (2)从三个条件:的面积为中任选一个作为已知条件,求周长的取值范围.

    【答案】(1)

    (2)答案见解析.

    【解析】

    【分析】

    1)由正弦定理及已知有,应用差角余弦公式化简求得,即可确定A的大小.

    2)根据所选的条件,应用正余弦定理、三角恒等变换及基本不等式、三角函数的范围求周长的取值范围.

    (1)

    中,由得:,又

    ,即

    ,又

    (2)

    选择:因为,则,得

    由余弦定理得

    的周长

    因为,当且仅当时等号成立,

    所以,即的周长的取值范围是

    选择,因为

    由正弦定理得

    的周长

    因为,则,故

    所以,即的周长的取值范围是

    选择.因为

    由正弦定理得

    的周长

    因为,所以,则

    的周长的取值范围是.

     

     

    题型二:面积问题

    2.在中,角的对边分别为

    (1)求角

    (2)若点满足,且,求面积的取值范围.

    【答案】(1)

    (2)

    【解析】

    【分析】

    1)结合辅助角公式得到,进而可求出结果;

    2)结合正弦定理以及三角恒等变换求出,然后结合正弦函数的图象与性质即可求出的面积的取值范围,从而根据即可求出结果.

    (1)

    因为,所以,且

    (2)

    因为点满足,所以,

    题型三:长度问题

    3.已知 内角ABC的对边分别为abc 的面积.

    (1)求边c

    (2)为锐角三角形,求a的取值范围.

    【答案】(1)1

    (2)

    【解析】

    【分析】

    1)根据结合三角形内角和定理求得,由三角形面积公式结合,求得答案;

    2)由正弦定理表示,由三角形为锐角三角形确定,即可求得答案.

    (1)

    因为,所以

    因为,所以 .

    (2)

    中,由正弦定理

    由(1)知,代入上式得:

    因为为锐角三角形,则,所以

    所以

    所以.

    4.已知的三边长分别为,角是钝角,则的取值范围是________.

    【答案】

    【解析】

    【分析】

    B是钝角,得出,再按c>ac≤a放缩,转化为的函数得解.

    【详解】

    的三边长分别为,且角是钝角,则

    c>a时,令

    ,当且仅当时取“=”

    c≤a时,

    上单调递增,,即

    综上得,所以的取值范围是.

    故答案为:

    题型四:转化为角范围问题

    5.已知函数

    (1)求函数的最大值;

    (2)已知在锐角ABC中,角ABC所对的边分别是abc,且满足,求的取值范围.

    【答案】(1)

    (2)

    【解析】

    【分析】

    1)利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质计算可得;

    2)依题意可得,再由正弦定理将边化角,结合两角和的正弦公式得到,在根据三角形内角和定理得到,根据三角形为锐角三角形求出的取值范围,再根据正弦函数的性质计算可得;

    (1)

    解:

    ,此时,即

    (2)

    解:由

    ,由正弦定理及已知可得

    整理得,即

    ,则,所以

    ,因为,所以

    ,即,所以,所以,所以

    ,则

    的取值范围为

    题型五: 倍角问题

    6.已知的内角的对边分别为,若,则的取值范围为______.

    【答案】

    【解析】

    【分析】

    先利用正弦定理和,将转化为,然后令,则,再利用导数判断函数的单调性,从而可求出的取值范围,进而可得答案

    【详解】

    解:因为

    所以

    因为

    所以

    所以,所以

    所以

    ,则

    所以

    所以上恒成立,

    所以上单调递减,

    所以,即

    所以的取值范围为

    故答案为:

    【点睛】

    关键点点睛:此题考查正弦定理的应用,考查导数的应用,解题的关键是利用正弦定理将转化为,再构造函数,利用导数求解即可,考查数学转化思想和计算能力,属于中档题

    题型 角平分线问题

    7.记的内角的对边分别为,且.

    (1)的大小;

    (2)边上的高为,且的角平分线交于点,求的最小值.

    【答案】(1)

    (2)

    【解析】

    【分析】

    1)利用正弦定理进行边化角,结合三角恒等变换整理;(2)根据等面积可得,利用余弦定理得和基本不等式可得,根据面积得,整理分析.

    (1)

    由正弦定理得,得

    因为,所以,即.

    (2)

    因为,所以.

    由余弦定理得,得(当且仅当时,等号成立),即.

    因为,所以.

    因为,所以.

    因为函数上单调递增,所以

    所以,即.的最小值为.

    题型 中线问题

    8.锐角的内角ABC的对边分别为abc,已知

    (1)A

    (2)DAB的中点,求CD的取值范围.

    【答案】(1)

    (2)

    【解析】

    【分析】

    1)根据已知条件,由正弦定理可得,进而可得,又为锐角三角形,从而即可求解;

    2)在中,由余弦定理可得,又为锐角三角形,进而有,又,可得,从而由二次函数的性质即可求解.

    (1)

    解:因为

    由正弦定理可得

    所以

    所以

    因为,即

    所以

    因为,所以

    又因为为锐角三角形,所以

    (2)

    解:由(1)知,又

    中,由余弦定理可得

    因为为锐角三角形,所以

    由余弦定理可得

    所以 ,解得

    所以由二次函数性质可得CD的取值范围是.

    题型 四心问题

    9.在中,内角ABC的对边分别为abc,点O的外心,

    (1)求角A

    (2)外接圆的周长为,求周长的取值范围,

    【答案】(1)

    (2)

    【解析】

    【分析】

    1)由三角形外心的定义和向量数量积的几何意义对条件化简,然后利用正弦定理边化角,整理化简可得;

    2)先求外接圆半径,结合(1)和正弦定理将三角形周长表示为角C的三角函数,由正弦函数性质可得.

    (1)

    过点OAB的垂线,垂足为D

    因为O的外心,所以DAB的中点

    所以,同理

    所以,由正弦定理边化角得:

    所以

    整理得:

    因为,所以

    所以,即

    所以,得

    (2)

    外接圆的半径为R

    因为外接圆的周长为

    所以,得

    所以周长

    由(1)知

    所以

    因为,所以

    所以

    所以,即

    所以周长的取值范围为

    题型 坐标法

    10.在平面直角坐标系中,已知为圆上两点,点,且,则线段的长的取值范围为  

    【解答】解:在平面直角坐标系中,已知为圆上两点,点,且,如图所示当时,取得最小值或最大值.由,可得

    ,可得

    解得

    故答案为:

    题型 隐圆问题

    11.若点的重心,且,则的最大值为  

    【解答】解:设中点为,连接,可得重心上且

    所在直线为轴,中点为原点建立如图所示直角坐标系

    ,则

    ,可得

    在以为直径的圆上运动两点除外)

    由此可得,整理得

    因此,点在以原点为圆心,半径为3的圆上运动轴上两点除外)

    在点的运动中观察的变化,可得当点在轴时,达到最大值

    而且同时达到最大值.

    此时,可得

    故选:

    12.在平面四边形中,,若,则的最小值为  

    【解答】解:以为坐标原点,以轴,以轴建立如图坐标系,设

    所以

    ,即点在以为圆心,以2为半径的圆上,

    ,则,所以

    所以,即

    所以取得最小值即取得最小值,

    根据三角形的两边之和大于第三边,

    故填:

    题型十一两边夹问题

    13.在中,若,且的周长为12

    1)求证:为直角三角形;

    2)求面积的最大值.

    【解答】解:(1)在

    可得

    可得

    是三角形内角,由可得若,则

    ,则,这都是不可能的,

    ,可得

    是直角三角形.

    (也可以是直角三角形.

    2)设直角三角形的两直角边分别为,斜边为,则直角三角形的面积

    由已知,得

    ,当且仅当时,取最大值.

     

    题型十二:与正切有关的最值问题

    14.在中,内角ABC所对的边分别为abc,且.求:

    (1)

    (2)的取值范围.

    【答案】(1)

    (2)

    【解析】

    【分析】

    1)由正弦定理及正弦的2倍角公式可求解;

    2)由正弦定理及正弦的两角差将问题转化为求的范围,再利用2倍角公式化为即可求解.

    (1)

    因为

    所以,

    因为

    因为.

    (2)

    由正弦定理,

    因为,所以,所以

    所以,所以的取值范围是.

    题型十三最大角问题

    15.最大视角问题是1471年德国数学家米勒提出的几何极值问题,故最大视角问题一般称为米勒问题.如图,树顶离地面米,树上另一点离地面米,在离地面米的处看此树,离此树的水平距离为  米时看的视角最大.

    【解答】解:如图所示,过点,交延长线与点

    由题意可得,

    中,

    中,

    当且仅当,等号成立,即

    离此树的水平距离为米时看的视角最大,

    故答案为:

     

    题型十四费马点、布洛卡点、拿破仑三角形问题

    16.著名的费马问题是法国数学家皮埃尔德费马1643年提出的平面几何极值问题:已知一个三角形,求作一点,使其与此三角形的三个顶点的距离之和最小.费马问题中的所求点称为费马点,已知对于每个给定的三角形,都存在唯一的费马点,当的三个内角均小于时,则使得的点即为费马点.已知点的费马点,且,若,则实数的最小值为  

    【解答】解:设,其中

    由余弦定理可得

    因为

    所以

    因为,所以

    ,当且仅当时,取得等号.

    因为,所以

    所以,解得(舍去),

    当且仅当时,取得等号.

    所以的最小值为

    故答案为:

    17.拿破仑定理是法国著名军事家拿破仑波拿巴最早提出的一个几何定理:以任意三角形的三条边为边,向外构造三个等边三角形,则这三个等边三角形的外接圆圆心恰为另一个等边三角形(此等边三角形称为拿破仑三角形)的顶点.已知内接于半径为的圆,以为边向外作三个等边三角形,其外接圆圆心依次记为.若,则的面积最大值为   

    【解答】解:如图,

    由正弦定理可得,已知

    ,故

    由余弦定理可得,,即

    ,整理得:

    故答案为:

    题型十五托勒密定理及旋转相似

    18.托勒密是古希腊天文学家、地理学家、数学家,托勒密定理就是由其名字命名,该定理原文:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和.其意思为:圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积.从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质.已知四边形的四个顶点在同一个圆的圆周上,是其两条对角线,,且为正三角形,则四边形的面积为  

    A8 B16 C D

    【解答】解:如图,

    ,由托勒密定理知,

    所以

    又因为

    所以

    故选:

    题型十六三角形中的平方问题

    19.在锐角三角形中,已知,则的最小值为  

    【解答】解:利用正弦定理把角化边,

    再由余弦定理可得:

    ,又

    代入

    当且仅当时(因为是锐角三角形成立)等号成立.

    的最小值为:

    故答案为:

    题型十七等面积法、张角定理

    20.给定平面上四点,满足,则面积的最大值为  

    【解答】解:

    的距离为,则由等面积可得

    面积的最大值为

    故答案为:

     

    相关教案

    备战2024新高考-高中数学二轮重难点专题33-圆锥曲线中定点定值问题: 这是一份备战2024新高考-高中数学二轮重难点专题33-圆锥曲线中定点定值问题,文件包含2024新高考二轮重难点专题33圆锥曲线中定点定值问题原卷版docx、2024新高考二轮重难点专题33圆锥曲线中定点定值问题解析版docx等2份教案配套教学资源,其中教案共29页, 欢迎下载使用。

    备战2024新高考-高中数学二轮重难点专题23-圆中的范围和最值问题: 这是一份备战2024新高考-高中数学二轮重难点专题23-圆中的范围和最值问题,文件包含2024新高考二轮重难点专题23圆中的范围和最值问题原卷版docx、2024新高考二轮重难点专题23圆中的范围和最值问题解析版docx等2份教案配套教学资源,其中教案共17页, 欢迎下载使用。

    备战2024新高考-高中数学二轮重难点专题17-向量中的范围与最值问题: 这是一份备战2024新高考-高中数学二轮重难点专题17-向量中的范围与最值问题,文件包含2024新高考二轮重难点专题17向量中的范围与最值问题原卷版docx、2024新高考二轮重难点专题17向量中的范围与最值问题解析版docx等2份教案配套教学资源,其中教案共24页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        备战2024新高考-高中数学二轮重难点专题15-三角形中的范围和最值问题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map