还剩10页未读,
继续阅读
北师大版数学九年级上册 2.2 第2课时 用配方法求解较复杂的一元二次方程 课件
展开
这是一份北师大版数学九年级上册 2.2 第2课时 用配方法求解较复杂的一元二次方程 课件,共18页。
2.2 用配方法求解一元二次方程第2课时 用配方法求解较复杂的一元二次方程第二章 一元二次方程B·九年级上册1.会用配方法解二次项系数不为1的一元二次方程;.(重点)2.能够熟练地、灵活地应用配方法解一元二次方程.(难点)学习目标问题:用配方法解一元二次方程(二次项系数为1)的步骤是什么?步骤:(1)将常数项移到方程的右边,使方程的左边只 含二次项和一次项; (2)两边都加上一次项系数一半的平方. (3)直接用开平方法求出它的解.导入新课用配方法解二次项系数不为1的一元二次方程问题1:观察下面两个是一元二次方程的联系和区别: ① x2 + 6x + 8 = 0 ; ② 3x2 +18x +24 = 0.问题2:用配方法来解 x2 + 6x + 8 = 0 . 解:移项,得 x2 + 6x = -8 , 配方,得 (x + 3)2 = 1. 开平方, 得 x + 3 = ±1. 解得 x1 = -2 , x2= -4.想一想怎么来解3x2 +18x +24 例1:用配方法解方程: 3x2 +18x +24 = 0. 解:方程两边同时除以3,得 x2 + 6x + 8 = 0 . 移项,得 x2 + 6x = -8 , 配方, 得 (x + 3)2 = 1. 开平方, 得 x + 3 = ±1. 解得 x1 = -2 , x2= -4 . 在使用配方法过程中若二次项的系数不为1时,需要将二次项系数化为1后,再根据配方法步骤进行求解.结论例2:解方程: 3x2 + 8x -3 = 0. 解:两边同除以3,得 x2 + x - 1=0. 配方,得 x2 + x + ( ) 2 - ( )2 - 1 = 0, (x + )2 - =0. 移项,得 x + =± , 即 x + = 或 x + = . 所以 x1= , x2 = -3 . 例3:一个小球从地面上以15m/s的初速度竖直向上弹出,它在空中的高度h (m)与时间 t (s)满足关系:h=15t - 5t2.小球何时能达到10m高?解:将 h = 10代入方程式中. 15t - 5t2 = 10. 两边同时除以-5,得 t2 - 3t = -2, 配方,得 t2 - 3t + ( )2= ( )2 - 2, (t - )2 =移项,得 (t - )2 =即 t - = ,或 t - = .所以 t1= 2 , t2 = 1 . ①二次项系数要化为1;②在二次项系数化为1时,常数项也要除以二次项系数;③配方时,两边同时加上一次项系数一半的平方.注意即在1s或2s时,小球可达10m高.配方法的应用典例精析例4.试用配方法说明:不论k取何实数,多项式k2-4k+5的值必定大于零.解:k2-4k+5=k2-4k+4+1=(k-2)2+1因为(k-2)2≥0,所以(k-2)2+1≥1.所以k2-4k+5的值必定大于零.1. 方程2x2 - 3m - x +m2 +2=0有一根为x = 0,则m的值为( ) A. 1 B.1 C.1或2 D.1或-22.应用配方法求最值.(1) 2x2 - 4x+5的最小值;(2) -3x2 + 5x +1的最大值.练一练C解:(1) 2x2 - 4x +5 = 2(x - 1)2 +3 当x =1时有最小值3 (2) -3x2 + 12x - 16 = -3(x - 2)2 - 4 当x =2时有最大值-4归纳总结配方法的应用1.求最值或证明代数式的值为恒正(或负)对于一个关于x的二次多项式通过配方成a(x+m)2+n的形式后,(x+m)2≥0,n为常数,当a>0时,可知其最小值;当a<0时,可知其最大值.2.完全平方式中的配方如:已知x2-2mx+16是一个完全平方式,所以一次项系数一半的平方等于16,即m2=16,m=±4.3.利用配方构成非负数和的形式对于含有多个未知数的二次式的等式,求未知数的值,解题突破口往往是配方成多个完全平方式得其和为0,再根据非负数的和为0,各项均为0,从而求解.如:a2+b2-4b+4=0,则a2+(b-2)2=0,即a=0,b=2.1.用配方法解方程: x2 + x = 0. 解:方程两边同时除以 ,得 x2 - 5x + = 0 . 移项,得 x2 - 5x = - , 配方, 得 x2 - 5x + ( )2= ( )2 - . 即 (x + )2 = .当堂练习两边开平方,得 x - = ±即 x - = 或 x - =所以 x1 = x2 = 2.用配方法解方程:3x2 - 4x + 1 = 0. 解:方程两边同时除以 3 ,得 x2 - x + = 0 . 移项,得 x2 - x = - , 配方, 得 x2 - x + ( )2= ( )2 - .即 (x - )2 =两边开平方,得 x - = ±即 x - = 或 x - =所以 x1 = 1 x2 = 3.若 ,求(xy)z 的值.解:对原式配方,得 由代数式的性质可知 4.已知a,b,c为△ABC的三边长,且 试判断△ABC的形状.解:对原式配方,得 由代数式的性质可知 所以,△ABC为等边三角形. 配方法方法在方程两边都配上步骤一移常数项;二配方[配上 ];三写成(x+n)2=p (p ≥0); 四直接开平方法解方程.特别提醒:在使用配方法解方程之前先把方程化为x2+px+q=0的形式.应用求代数式的最值或证明课堂小结
2.2 用配方法求解一元二次方程第2课时 用配方法求解较复杂的一元二次方程第二章 一元二次方程B·九年级上册1.会用配方法解二次项系数不为1的一元二次方程;.(重点)2.能够熟练地、灵活地应用配方法解一元二次方程.(难点)学习目标问题:用配方法解一元二次方程(二次项系数为1)的步骤是什么?步骤:(1)将常数项移到方程的右边,使方程的左边只 含二次项和一次项; (2)两边都加上一次项系数一半的平方. (3)直接用开平方法求出它的解.导入新课用配方法解二次项系数不为1的一元二次方程问题1:观察下面两个是一元二次方程的联系和区别: ① x2 + 6x + 8 = 0 ; ② 3x2 +18x +24 = 0.问题2:用配方法来解 x2 + 6x + 8 = 0 . 解:移项,得 x2 + 6x = -8 , 配方,得 (x + 3)2 = 1. 开平方, 得 x + 3 = ±1. 解得 x1 = -2 , x2= -4.想一想怎么来解3x2 +18x +24 例1:用配方法解方程: 3x2 +18x +24 = 0. 解:方程两边同时除以3,得 x2 + 6x + 8 = 0 . 移项,得 x2 + 6x = -8 , 配方, 得 (x + 3)2 = 1. 开平方, 得 x + 3 = ±1. 解得 x1 = -2 , x2= -4 . 在使用配方法过程中若二次项的系数不为1时,需要将二次项系数化为1后,再根据配方法步骤进行求解.结论例2:解方程: 3x2 + 8x -3 = 0. 解:两边同除以3,得 x2 + x - 1=0. 配方,得 x2 + x + ( ) 2 - ( )2 - 1 = 0, (x + )2 - =0. 移项,得 x + =± , 即 x + = 或 x + = . 所以 x1= , x2 = -3 . 例3:一个小球从地面上以15m/s的初速度竖直向上弹出,它在空中的高度h (m)与时间 t (s)满足关系:h=15t - 5t2.小球何时能达到10m高?解:将 h = 10代入方程式中. 15t - 5t2 = 10. 两边同时除以-5,得 t2 - 3t = -2, 配方,得 t2 - 3t + ( )2= ( )2 - 2, (t - )2 =移项,得 (t - )2 =即 t - = ,或 t - = .所以 t1= 2 , t2 = 1 . ①二次项系数要化为1;②在二次项系数化为1时,常数项也要除以二次项系数;③配方时,两边同时加上一次项系数一半的平方.注意即在1s或2s时,小球可达10m高.配方法的应用典例精析例4.试用配方法说明:不论k取何实数,多项式k2-4k+5的值必定大于零.解:k2-4k+5=k2-4k+4+1=(k-2)2+1因为(k-2)2≥0,所以(k-2)2+1≥1.所以k2-4k+5的值必定大于零.1. 方程2x2 - 3m - x +m2 +2=0有一根为x = 0,则m的值为( ) A. 1 B.1 C.1或2 D.1或-22.应用配方法求最值.(1) 2x2 - 4x+5的最小值;(2) -3x2 + 5x +1的最大值.练一练C解:(1) 2x2 - 4x +5 = 2(x - 1)2 +3 当x =1时有最小值3 (2) -3x2 + 12x - 16 = -3(x - 2)2 - 4 当x =2时有最大值-4归纳总结配方法的应用1.求最值或证明代数式的值为恒正(或负)对于一个关于x的二次多项式通过配方成a(x+m)2+n的形式后,(x+m)2≥0,n为常数,当a>0时,可知其最小值;当a<0时,可知其最大值.2.完全平方式中的配方如:已知x2-2mx+16是一个完全平方式,所以一次项系数一半的平方等于16,即m2=16,m=±4.3.利用配方构成非负数和的形式对于含有多个未知数的二次式的等式,求未知数的值,解题突破口往往是配方成多个完全平方式得其和为0,再根据非负数的和为0,各项均为0,从而求解.如:a2+b2-4b+4=0,则a2+(b-2)2=0,即a=0,b=2.1.用配方法解方程: x2 + x = 0. 解:方程两边同时除以 ,得 x2 - 5x + = 0 . 移项,得 x2 - 5x = - , 配方, 得 x2 - 5x + ( )2= ( )2 - . 即 (x + )2 = .当堂练习两边开平方,得 x - = ±即 x - = 或 x - =所以 x1 = x2 = 2.用配方法解方程:3x2 - 4x + 1 = 0. 解:方程两边同时除以 3 ,得 x2 - x + = 0 . 移项,得 x2 - x = - , 配方, 得 x2 - x + ( )2= ( )2 - .即 (x - )2 =两边开平方,得 x - = ±即 x - = 或 x - =所以 x1 = 1 x2 = 3.若 ,求(xy)z 的值.解:对原式配方,得 由代数式的性质可知 4.已知a,b,c为△ABC的三边长,且 试判断△ABC的形状.解:对原式配方,得 由代数式的性质可知 所以,△ABC为等边三角形. 配方法方法在方程两边都配上步骤一移常数项;二配方[配上 ];三写成(x+n)2=p (p ≥0); 四直接开平方法解方程.特别提醒:在使用配方法解方程之前先把方程化为x2+px+q=0的形式.应用求代数式的最值或证明课堂小结
相关资料
更多