![九上第3章 圆的基本性质(知识清单)(浙教版)01](http://img-preview.51jiaoxi.com/2/3/14814018/0-1694410909575/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![九上第3章 圆的基本性质(知识清单)(浙教版)02](http://img-preview.51jiaoxi.com/2/3/14814018/0-1694410909612/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![九上第3章 圆的基本性质(知识清单)(浙教版)03](http://img-preview.51jiaoxi.com/2/3/14814018/0-1694410909635/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
九上第3章 圆的基本性质(知识清单)(浙教版)
展开九上第3章 圆的基本性质知识清单
一、圆的定义
1. 圆的描述概念
如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.
要点:
①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;
②圆是一条封闭曲线.
2.圆的集合概念
圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.
平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点.
圆的内部可以看作是到圆心的距离小于半径的的点的集合;圆的外部可以看成是到圆心的距离大于半径的点的集合.
要点:①定点为圆心,定长为半径;
②圆指的是圆周,而不是圆面;
③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.
二、与圆有关的概念
1. 弦
弦:连结圆上任意两点的线段叫做弦.
直径:经过圆心的弦叫做直径.
要点:
直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.
为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.
证明:连结OC、OD
∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)
∴直径AB是⊙O中最长的弦.
2. 弧
弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.
半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;
优弧:大于半圆的弧叫做优弧;
劣弧:小于半圆的弧叫做劣弧.
要点:①半圆是弧,而弧不一定是半圆;
②无特殊说明时,弧指的是劣弧.
3.等弧
在同圆或等圆中,能够完全重合的弧叫做等弧.
要点:①等弧成立的前提条件是在同圆或等圆中,不能忽视;
②圆中两平行弦所夹的弧相等.
4.同心圆与等圆
圆心相同,半径不等的两个圆叫做同心圆.
圆心不同,半径相等的两个圆叫做等圆.
要点:同圆或等圆的半径相等.
三、点与圆的位置关系
点和圆的位置关系有三种:点在圆内,点在圆上,点在圆外.
若⊙O的半径为r,点P到圆心O的距离为d,那么:
点P在圆内 d < r ;点P在圆上 d = r ;点P在圆外 d >r.
“”读作“等价于”,它表示从左端可以推出右端,从右端也可以推出左端.
要点:点在圆上是指点在圆周上,而不是点在圆面上;
四、确定圆的条件
(1)经过一个已知点能作无数个圆;
(2)经过两个已知点A、B能作无数个圆,这些圆的圆心在线段AB的垂直平分线上;
(3)不在同一直线上的三个点确定一个圆.
(4)(后面还会学习到)经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.
如图:⊙O是△ABC的外接圆, △ABC是⊙O的内接三角形,点O是△ABC的外心
外心的性质:外心是△ABC三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等.
要点:
(1)不在同一直线上的三个点确定一个圆.“确定”的含义是“存在性和唯一性”.
(2)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定.
五、旋转的概念
一般地,一个图形变为另一个图形,在运动的过程中,原图形上的所有点都绕一个固定的点,按同一个方向,转动同一个角度,这样的图形运动叫做图形的旋转.这个固定的定点叫做旋转中心,转过的角叫做旋转角.如下图,点O为旋转中心,∠AOA′(或∠BOB′或∠COC′)是旋转角.
要点:
(1)旋转的三个要素:旋转中心、旋转方向和旋转角度.
(2)如上图,如果图形上的点A经过旋转变为点A′,那么这两个点叫做这个图形旋转的对应点. 点B与点B′,点C与点C′均是对应点,线段AB与A′B′、线段AC与A′C′、线段BC与B′C′均是对应线段.
六、旋转的性质
一般地,图形的旋转有下面的性质:
(1)图形经过旋转所得的图形和原图形全等;
(2)对应点到旋转中心的距离相等;
(3)任意一对对应点与旋转中心连线所成的角度等于旋转的角度.
要点:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.
七、旋转的作图
在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.
要点:作图的步骤:
(1)连接图形中的每一个关键点与旋转中心;
(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);
(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;
(4)连接所得到的各对应点.
八、垂径定理及其推论
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.
推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.
推论2:平分弧的直径垂直平分弧所对的弦.
注:垂径定理及其推论是证明两条线段相等、两弧相等及两直线垂直的重要依据之一,在有关弦长、弦心距的计算中常需要作垂直于弦的线段,构造直角三角形,再利用勾股定理、方程思想来求解.
【微点拨】
(1)垂径定理是由两个条件推出两个结论,即
(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.
【知识拓展】
1、根据圆的对称性及垂径定理还有如下结论:
(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.
2、在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)
九、圆心角
1.圆心角:顶点在圆心的角叫做圆心角.圆心角的度数等于它所对的弧的度数.
2.圆心角性质定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各组量都相等.
十、圆周角
1.圆周角:顶点在圆上,两边分别和圆相交的角叫做圆周角.圆周角的度数等于它所对弧上的圆心角度数的一半.
2.圆周角性质定理:一条弧所对的圆周角等于它所对的圆心角的一半.
推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.
推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
十一、 圆内接四边形
1.圆的内接四边形:如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆.
2. 圆内接四边形的性质:圆的内接四边形的对角互补.
十二、正多边形的相关计算
1.正多边形的中心:正多边形的外接圆的圆心.外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距.作相等的圆心角就可以等分圆周,从而得到相应正多边形.
2.每个正多边形都有一个外接圆和一个内切圆,正多边形的边心距就是内切圆的半径.研究正多边形往往构造等腰三角形,并结合勾股定理、三角函数等解决.
十三、弧长的计算
在半径为R的圆中,n°的圆心角所对的弧长l的计算公式为:l=.
十四、与扇形有关的面积计算
在半径为R的圆中,n°的圆心角所对的扇形(弧长为l)面积的计算公式为:S扇形==lR.