![考点08平面向量及其应用(12种题型6个易错考点)(原卷版)-【一轮复习讲义】2024年高考数学复习全程规划(上海地区专用)第1页](http://img-preview.51jiaoxi.com/3/3/14802700/0-1693873669172/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![考点08平面向量及其应用(12种题型6个易错考点)(原卷版)-【一轮复习讲义】2024年高考数学复习全程规划(上海地区专用)第2页](http://img-preview.51jiaoxi.com/3/3/14802700/0-1693873669213/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![考点08平面向量及其应用(12种题型6个易错考点)(原卷版)-【一轮复习讲义】2024年高考数学复习全程规划(上海地区专用)第3页](http://img-preview.51jiaoxi.com/3/3/14802700/0-1693873669236/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
考点08平面向量及其应用(12种题型6个易错考点)(原卷版)-【一轮复习讲义】2024年高考数学复习全程规划(上海地区专用)
展开
这是一份考点08平面向量及其应用(12种题型6个易错考点)(原卷版)-【一轮复习讲义】2024年高考数学复习全程规划(上海地区专用),共17页。
考点08平面向量及其应用(12种题型6个易错考点)
【课程安排细目表】
一、 真题抢先刷,考向提前知
二、考点清单
三、题型方法
四、易错分析
五.刷压轴
一、 真题抢先刷,考向提前知
一.选择题(共1小题)
1.(2021•上海)在△ABC中,D为BC中点,E为AD中点,则以下结论:①存在△ABC,使得=0;②存在△ABC,使得∥(+);它们的成立情况是( )
A.①成立,②成立 B.①成立,②不成立
C.①不成立,②成立 D.①不成立,②不成立
二.填空题(共9小题)
2.(2023•上海)已知向量=(3,4),=(1,2),则﹣2= .
3.(2021•上海)如图正方形ABCD的边长为3,求•= .
4.(2023•上海)已知向量=(﹣2,3),=(1,2),则•= .
5.(2020•上海)三角形ABC中,D是BC中点,AB=2,BC=3,AC=4,则= .
6.(2022•上海)若平面向量||=||=||=λ,且满足•=0,•=2,•=1,则λ= .
7.(2022•上海)在△ABC中,∠A=90°,AB=AC=2,点M为边AB的中点,点P在边BC上,则•的最小值为 .
8.(2020•上海)已知,,,,…,(k∈N*)是平面内两两互不相等的向量,满足||=1,且|﹣|∈{1,2}(其中i=1,2,j=1,2,…,k),则k的最大值是 .
9.(2020•上海)已知A1、A2、A3、A4、A5五个点,满足=0(n=1,2,3),||•||=n+1(n=1,2,3),则||的最小值为 .
10.(2023•上海)已知、、为空间中三组单位向量,且⊥、⊥,与夹角为60°,点P为空间任意一点,且||=1,满足|•|≤|•|≤|•|,则|•|最大值为 .
二、考点清单
1.向量的有关概念
(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.
(2)零向量:长度为0的向量,其方向是任意的.
(3)单位向量:长度等于1个单位的向量.
(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.
(5)相等向量:长度相等且方向相同的向量.
(6)相反向量:长度相等且方向相反的向量.
2.向量的线性运算
向量运算
定义
法则(或几何意义)
运算律
加法
求两个向量和的运算
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)
减法
求a与b的相反向量-b的和的运算
a-b=a+(-b)
数乘
求实数λ与向量a的积的运算
|λ a|=|λ||a|,当λ>0时,λa与a的方向相同;
当λ
相关试卷
这是一份2024年高考数学复习全程规划【一轮复习讲义】 考点11平面向量及其应用(20种题型6个易错考点)(原卷版+解析),共69页。试卷主要包含了 真题多维细目表,命题规律与备考策略,2023真题抢先刷,考向提前知,考点清单,题型方法,易错分析,刷基础等内容,欢迎下载使用。
这是一份考点11平面向量及其应用(20种题型6个易错考点)-【一轮复习讲义】2024年高考数学复习全程规划(新高考地区专用)(原卷版),共17页。试卷主要包含了 真题多维细目表,命题规律与备考策略,2023真题抢先刷,考向提前知,考点清单,题型方法,易错分析,刷基础等内容,欢迎下载使用。
这是一份考点09复数(7种题型5个易错考点)(原卷版)-【一轮复习讲义】2024年高考数学复习全程规划(上海地区专用),共14页。