|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题22.33 实际问题与二次函数(直通中考)(基础练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版)
    立即下载
    加入资料篮
    专题22.33 实际问题与二次函数(直通中考)(基础练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版)01
    专题22.33 实际问题与二次函数(直通中考)(基础练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版)02
    专题22.33 实际问题与二次函数(直通中考)(基础练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版)03
    还剩18页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题22.33 实际问题与二次函数(直通中考)(基础练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版)

    展开
    这是一份专题22.33 实际问题与二次函数(直通中考)(基础练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版),共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题22.33 实际问题与二次函数(直通中考)(基础练)
    一、单选题
    1.(2023·浙江·统考中考真题)一个球从地面竖直向上弹起时的速度为10米/秒,经过(秒)时球距离地面的高度(米)适用公式,那么球弹起后又回到地面所花的时间(秒)是(    )
    A.5 B.10 C.1 D.2
    2.(2010·广西南宁·中考真题)如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=30t﹣5t2,那么小球从抛出至回落到地面所需要的时间是(  )

    A.6s B.4s C.3s D.2s
    3.(2023·天津·统考中考真题)如图,要围一个矩形菜园,共中一边是墙,且的长不能超过,其余的三边用篱笆,且这三边的和为.有下列结论:
    ①的长可以为;
    ②的长有两个不同的值满足菜园面积为;
    ③菜园面积的最大值为.
    其中,正确结论的个数是(    )
      
    A.0 B.1 C.2 D.3
    4.(2023·福建·统考中考真题)根据福建省统计局数据,福建省年的地区生产总值为亿元,年的地区生产总值为亿元.设这两年福建省地区生产总值的年平均增长率为x,根据题意可列方程(  )
    A. B.
    C. D.
    5.(2019·山东临沂·统考中考真题)从地面竖直向上抛出一小球,小球的高度(单位:)与小球运动时间(单位:)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度时,.其中正确的是(   )

    A.①④ B.①② C.②③④ D.②③
    6.(2007·江苏扬州·中考真题)烟花厂为扬州烟花三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度与飞行时间的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为(  )
    A. B. C. D.
    7.(2019·江苏·中考真题)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是(  )

    A.18m2 B.m2 C.m2 D.m2
    8.(2019·台湾·统考中考真题)如图,坐标平面上有一顶点为的抛物线,此抛物线与方程式的图形交于、两点,为正三角形.若点坐标为,则此抛物线与轴的交点坐标为何?(  )

    A. B. C. D.
    9.(2011·青海西宁·中考真题)西宁中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3米,此时距喷水管的水平距离为米,在如图所示的坐标系中,这个喷泉的函数关系式是(   )

    A.y=-(x-)2+3 B.y=-3(x+)2+3
    C.y=-12(x-)2+3 D.y=-12(x+)2+3
    10.(2020·湖南长沙·统考中考真题)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p与加工煎炸的时间t(单位:分钟)近似满足函数关系式:(a,b,c为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为(       )

    A.3.50分钟 B.4.05分钟 C.3.75分钟 D.4.25分钟
    二、填空题
    11.(2022·江苏南通·统考中考真题)根据物理学规律,如果不考虑空气阻力,以的速度将小球沿与地面成角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是,当飞行时间t为 s时,小球达到最高点.
    12.(2022·甘肃武威·统考中考真题)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度(单位:m)与飞行时间(单位:s)之间具有函数关系:,则当小球飞行高度达到最高时,飞行时间 s.

    13.(2020·江苏连云港·中考真题)加工爆米花时,爆开且不糊的颗粒的百分比称为“可食用率”.在特定条件下,可食用率与加工时间(单位:)满足函数表达式,则最佳加工时间为 .
    14.(2016·广东梅州·中考真题)如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为 .

    15.(2023·山东滨州·统考中考真题)要修一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为处达到最高,高度为,水柱落地处离池中心,水管长度应为 .

    16.(2023·湖北宜昌·统考中考真题)如图,一名学生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是,则铅球推出的距离 m.
      
    17.(2023·辽宁沈阳·统考中考真题)如图,王叔叔想用长为的栅栏,再借助房屋的外墙围成一个矩形羊圈,已知房屋外墙足够长,当矩形的边 时,羊圈的面积最大.
      
    18.(2022·江苏连云港·统考中考真题)如图,一位篮球运动员投篮,球沿抛物线运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为,则他距篮筐中心的水平距离是 .

    三、解答题
    19.(2023·辽宁锦州·统考中考真题)端午节前夕,某批发部购入一批进价为8元/袋的粽子,销售过程中发现:日销量y(袋)与售价x(元/袋)满足如图所示的一次函数关系.
    (1)求y与x之间的函数关系式;
    (2)每袋粽子的售价定为多少元时,所获日销售利润最大,最大日销售利润是多少元?










    20.(2022·河南·统考中考真题)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.
    (1)求抛物线的表达式.
    (2)爸爸站在水柱正下方,且距喷水头P水平距离3m,身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.








    21.(2022·山东滨州·统考中考真题)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.
    (1)求y关于x的一次函数解析式;
    (2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.





    22.(2022·江苏淮安·统考中考真题)端午节前夕,某超市从厂家分两次购进、两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进品牌粽子100袋和品牌粽子150袋,总费用为7000元;第二次购进品牌粽子180袋和品牌粽子120袋,总费用为8100元.
    (1)求、两种品牌粽子每袋的进价各是多少元;
    (2)当品牌粽子销售价为每袋54元时,每天可售出20袋,为了促销,该超市决定对品牌粽子进行降价销售.经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当品牌粽子每袋的销售价降低多少元时,每天售出品牌粽子所获得的利润最大?最大利润是多少元?





    23.(2022·陕西·统考中考真题)现要修建一条隧道,其截面为抛物线型,如图所示,线段表示水平的路面,以O为坐标原点,以所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:,该抛物线的顶点P到的距离为.

    (1)求满足设计要求的抛物线的函数表达式;
    (2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到的距离均为,求点A、B的坐标.






    24.(2022·辽宁沈阳·统考中考真题)如图,用一根长60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.
    (1)若所围成矩形框架ABCD的面积为144平方厘米,则AB的长为多少厘米?
    (2)矩形框架ABCD面积最大值为______平方厘米.






























    参考答案
    1.D
    【分析】根据球弹起后又回到地面时,得到,解方程即可得到答案.
    解:球弹起后又回到地面时,即,
    解得(不合题意,舍去),,
    ∴球弹起后又回到地面所花的时间(秒)是2,
    故选:D
    【点拨】此题考查了求二次函数自变量的值,读懂题意,得到方程是解题的关键.
    2.A
    【分析】根据题意可得,当﹣5t2+30t=0时,小球从抛出至回落到地面,解出即可求解.
    解:由小球高度h与运动时间t的关系式h=30t﹣5t2.
    令h=0,有﹣5t2+30t=0,
    解得:t1=0(舍去),t2=6
    ∴小球从抛出至回落到地面所需要的时间是6秒.
    故选:A.
    【点拨】本题主要考查了二次函数的应用,明确题意,得到当﹣5t2+30t=0时,小球从抛出至回落到地面是解题的关键.
    3.C
    【分析】设的长为,矩形的面积为,则的长为,根据矩形的面积公式列二次函数解析式,再分别根据的长不能超过,二次函数的最值,解一元二次方程求解即可.
    解:设的长为,矩形的面积为,则的长为,由题意得

    其中,即,
    ①的长不可以为,原说法错误;
    ③菜园面积的最大值为,原说法正确;
    ②当时,解得或,
    ∴的长有两个不同的值满足菜园面积为,说法正确;
    综上,正确结论的个数是2个,
    故选:C.
    【点拨】本题考查了二次函数的应用,解一元二次方程,准确理解题意,列出二次函数解析式是解题的关键.
    4.B
    【分析】设这两年福建省地区生产总值的年平均增长率为x,根据题意列出一元二次方程即可求解.
    解:设这两年福建省地区生产总值的年平均增长率为x,根据题意可列方程

    故选:B.
    【点拨】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.
    5.D
    【分析】根据函数的图象中的信息判断即可.
    解:①由图象知小球在空中达到的最大高度是;故①错误;
    ②小球抛出3秒后,速度越来越快;故②正确;
    ③小球抛出3秒时达到最高点即速度为0;故③正确;
    ④设函数解析式为:,
    把代入得,解得,
    ∴函数解析式为,
    把代入解析式得,,
    解得:或,
    ∴小球的高度时,或,故④错误;
    故选D.
    【点拨】本题考查了二次函数的应用,解此题的关键是正确的理解题意
    6.B
    解:h=-t2+20t+1=-(t-4)2+41
    -<0
    ∴这个二次函数图象开口向下,
    ∴当t=4时,升到最高点,
    故选B.
    7.C
    【分析】过点C作CE⊥AB于E,则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°,则
    ∠BCE=∠BCD-∠DCE=30°,BC=12-x,由直角三角形的,性质得出得出,又梯形面积公式求出梯形ABCD的面积S与x之间的函数关系式,根据二次函数的性质求解.
    解:如图,过点C作CE⊥AB于E, 

    则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°, 则∠BCE=∠BCD-∠DCE=30°,BC=12-x,
    在Rt△CBE中,∵∠CEB=90°,


    ∴梯形ABCD面积
    ∴当x=4时,S最大=24. 
    即CD长为4 m时,使梯形储料场ABCD的面积最大为24 m2;
    故选C.
    【点拨】此题考查了梯性质、矩形的性质、含30°角的直角三角形的性质、勾股定理、二次函数的运用,利用梯形的面积建立二次函数是解题的关键
    8.B
    【分析】设,,,可知,再由等边三角形的性质可知,设抛物线解析式,将点代入解析式即可求,进而求解.
    解:设,,
    点坐标为,

    为正三角形,
    , ,


    设抛物线解析式,



    当时,;
    故选B.

    【点拨】本题考查二次函数的图象及性质,等边三角形的性质;结合函数图象将等边三角形的边长转化为点的坐标是解题的关键.
    9.C
    【分析】根据二次函数的图象,喷水管喷水的最大高度为3米,此时喷水水平距离为米,由此得到顶点坐标为( ,3),所以设抛物线的解析式为y=a(x- )2+3,而抛物线还经过(0,0),由此即可确定抛物线的解析式.
    解:∵一支高度为1米的喷水管喷水的最大高度为3米,此时喷水水平距离为米,
    ∴顶点坐标为(,3),
    设抛物线的解析式为y=a(x-)2+3,
    而抛物线还经过(0,0),
    ∴0=a(0-)2+3,
    ∴a=-12,
    ∴抛物线的解析式为y=-12(x-)2+3.
    故选C.
    10.C
    【分析】将图中三个坐标代入函数关系式解出a和b,再利用对称轴公式求出即可.
    解:将(3,0.8)(4,0.9)(5,0.6)代入得:

    ②-①和③-②得
    ⑤-④得,解得a=﹣0.2.
    将a=﹣0.2.代入④可得b=1.5.
    对称轴=.
    故选C.
    【点拨】本题考查二次函数的三点式,关键在于利用待定系数法求解,且本题只需求出a和b即可得出答案.
    11.2
    【分析】将函数关系式转化为顶点式即可求解.
    解:根据题意,有,
    当时,有最大值.
    故答案为:2.
    【点拨】本题考查二次函数解析式的相互转化及应用,解决本题的关键是熟练二次函数解析式的特点及应用.
    12.2
    【分析】把一般式化为顶点式,即可得到答案.
    解:∵h=-5t2+20t=-5(t-2)2+20,
    且-5<0,
    ∴当t=2时,h取最大值20,
    故答案为:2.
    【点拨】本题考查二次函数的应用,解题的关键是掌握将二次函数一般式化为顶点式.
    13.3.75
    【分析】根据二次函数的对称轴公式直接计算即可.
    解:∵的对称轴为(min),
    故:最佳加工时间为3.75min,
    故答案为:3.75.
    【点拨】此题主要考查了二次函数性质的应用,涉及求顶点坐标、对称轴方程等,记住抛物线顶点公式是解题关键.
    14.(1+,2)或(1﹣,2).
    解:∵△PCD是以CD为底的等腰三角形,
    ∴点P在线段CD的垂直平分线上,
    如图,过P作PE⊥y轴于点E,则E为线段CD的中点,
    ∵抛物线与y轴交于点C,
    ∴C(0,3),且D(0,1),
    ∴E点坐标为(0,2),
    ∴P点纵坐标为2,在中,令y=2,可得,解得x=,∴P点坐标为(,2)或(,2),故答案为(,2)或(,2).
    【点拨】本题考查了等腰三角形的性质,垂直平分线的性质,抛物线与坐标轴的交点坐标,以及抛物线上点的坐标,解决此题的关键是和合理的推理正确的计算.
    15./2.25米/米/m/米/m
    【分析】以池中心为原点,竖直安装的水管为y轴,与水管垂直的水平面为x轴建立直角坐标系,设抛物线的解析式为,将代入求得a值,则时得的y值即为水管的长.
    解:以池中心为原点,竖直安装的水管为y轴,与水管垂直的水平面为x轴建立直角坐标系.
    由于在距池中心的水平距离为时达到最高,高度为,
    则设抛物线的解析式为:

    代入求得:.
    将值代入得到抛物线的解析式为:,
    令,则.
    故水管长度为.
    故答案为:.
    【点拨】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,正确建立平面直角坐标系是解题的关键.
    16.10
    【分析】令,则,再解方程,结合函数图象可得答案.
    解:令,则,
    解得:,,
    ∴,
    故答案为:.
    【点拨】本题考查的是二次函数的实际应用,理解题意令求解方程的解是解本题的关键.
    17.15
    【分析】设为,则,根据矩形的面积公式可得关于x的二次函数关系式,配方后即可解.
    解:设为,面积为,
    由题意可得:,
    当时,取得最大值,
    即时,羊圈的面积最大,
    故答案为:.
    【点拨】本题考查了二次函数的性质在实际生活中的应用.最大面积的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在时取得.
    18.4
    【分析】将代入中可求出x,结合图形可知,即可求出OH.
    解:当时,,解得:或,
    结合图形可知:,
    故答案为:4
    【点拨】本题考查二次函数的实际应用:投球问题,解题的关键是结合函数图形确定x的值.
    19.(1);(2)当粽子的售价定为12.5元/袋时,日销售利润最大,最大日销售利润是810元
    【分析】(1)直接应用待定系数法即可求出一次函数解析式;
    (2)根据题意列出获日销售利润与x的函数关系式,然后利用二次函数的性质即可求解.
    (1)解:设一次函数的解析式为,
    将,代入得:

    解得:,
    ∴求y与x之间的函数关系式为;
    (2)解:设日销售利润为w,
    由题意得:


    ∴当时,w有最大值,最大值为810,
    ∴当粽子的售价定为12.5元/袋时,日销售利润最大,最大日销售利润是810元.
    【点拨】本题考查了二次函数的应用,二次函数的最值,理解掌握题意,正确的找出题目中的等量关系,列出方程或函数关系式是解题的关键.
    20.(1);(2)2或6m
    【分析】(1)根据顶点,设抛物线的表达式为,将点,代入即可求解;
    (2)将代入(1)的解析式,求得的值,进而求与点的距离即可求解.
    (1)解:根据题意可知抛物线的顶点为,
    设抛物线的解析式为,
    将点代入,得,
    解得,
    抛物线的解析式为,
    (2)由,令,
    得,
    解得,
    爸爸站在水柱正下方,且距喷水头P水平距离3m,
    当她的头顶恰好接触到水柱时,她与爸爸的水平距离为(m),或(m).
    【点拨】本题考查了二次函数的实际应用,掌握顶点式求二次函数解析式是解题的关键.
    21.(1);(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元
    【分析】(1)设,把,和,代入求出k、b的值,从而得出答案;
    (2)根据总利润=每件利润×每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案.
    (1)解:设,把,和,代入可得

    解得,
    则;
    (2)解:每月获得利润



    ∵,
    ∴当时,P有最大值,最大值为3630.
    答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元.
    【点拨】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值.
    22.(1)种品牌粽子每袋的进价是25元,种品牌粽子每袋的进价是30元;(2)当品牌粽子每袋的销售价降低10元时,每天售出品牌粽子所获得的利润最大,最大利润是980元
    【分析】(1)根据已知数量关系列二元一次方程组,即可求解;
    (2)设品牌粽子每袋的销售价降低元,利润为元,列出关于的函数关系式,求出函数的最值即可.
    (1)解:设种品牌粽子每袋的进价是元,种品牌粽子每袋的进价是元,
    根据题意得,,
    解得,
    故种品牌粽子每袋的进价是25元,种品牌粽子每袋的进价是30元;
    (2)解:设品牌粽子每袋的销售价降低元,利润为元,
    根据题意得,

    ∵,
    ∴当品牌粽子每袋的销售价降低10元时,每天售出品牌粽子所获得的利润最大,最大利润是980元.
    【点拨】本题考查二次函数和二元一次方程的实际应用,根据已知数量关系列出函数解析式和二元一次方程组是解题的关键.
    23.(1);(2)
    【分析】(1)根据题意,设抛物线的函数表达式为,再代入(0,0),求出a的值即可;
    (2)根据题意知,A,B两点的纵坐标为6,代入函数解析式可求出两点的横坐标,从而 可解决问题.
    解:(1)依题意,顶点,
    设抛物线的函数表达式为,
    将代入,得.解之,得.
    ∴抛物线的函数表达式为.
    (2)令,得.
    解之,得.
    ∴.
    【点拨】本题考查了运用待定系数法求二次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出二次函数的解析式是关键.
    24.(1)AB的长为8厘米或12厘米;(2)150
    【分析】(1)设AB的长为x厘米,则有厘米,然后根据题意可得方程,进而求解即可;
    (2)由(1)可设矩形框架ABCD的面积为S,则有,然后根据二次函数的性质可进行求解.
    (1)解:设AB的长为x厘米,则有厘米,由题意得:

    整理得:,
    解得:,
    ∵,
    ∴,
    ∴都符合题意,
    答:AB的长为8厘米或12厘米.
    (2)解:由(1)可设矩形框架ABCD的面积为S平方厘米,则有:

    ∵,且,
    ∴当时,S有最大值,即为;
    故答案为:150.
    【点拨】本题主要考查一元二次方程及二次函数的应用,解题的关键是找准题干中的等量关系.
    相关试卷

    专题2.53 圆(全章直通中考)(基础练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(苏科版): 这是一份专题2.53 圆(全章直通中考)(基础练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(苏科版),共29页。

    专题22.34 实际问题与二次函数(直通中考)(培优练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版): 这是一份专题22.34 实际问题与二次函数(直通中考)(培优练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版),共39页。试卷主要包含了满足关系式,参考数据,之间的函数关系如图所示等内容,欢迎下载使用。

    专题22.39 二次函数(全章直通中考)(基础练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版): 这是一份专题22.39 二次函数(全章直通中考)(基础练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版),共22页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题22.33 实际问题与二次函数(直通中考)(基础练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map