![高考数学二轮复习知识 方法篇 专题3 函数与导数 第10练 含答案第1页](http://img-preview.51jiaoxi.com/3/3/14737788/0-1692583525196/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高考数学二轮复习知识 方法篇 专题3 函数与导数 第10练 含答案第2页](http://img-preview.51jiaoxi.com/3/3/14737788/0-1692583525234/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高考数学二轮复习知识 方法篇 专题3 函数与导数 第10练 含答案第3页](http://img-preview.51jiaoxi.com/3/3/14737788/0-1692583525259/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高考数学二轮复习知识 方法篇 专题3 函数与导数 第10练 含答案
展开
这是一份高考数学二轮复习知识 方法篇 专题3 函数与导数 第10练 含答案,共11页。
第10练 重应用——函数的实际应用
[题型分析·高考展望] 函数的实际应用也是高考常考题型,特别是基本函数模型的应用,在选择题、填空题、解答题中都会出现,多以实际生活、常见的自然现象为背景,较新颖、灵活,解决此类问题时,应从实际问题中分析涉及的数学知识,从而抽象出基本函数模型,然后利用基本函数的性质或相应的数学方法,使问题得以解决.
体验高考
1.(2015·课标全国Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为( )
答案 B
解析 由已知得,当点P沿着边BC运动,
即0≤x≤时,PA+PB=+tan x;
当点P在CD边上运动时,
即≤x≤时,
PA+PB= + ,
当x=时,PA+PB=2;当点P在AD边上运动时,即≤x≤π时,PA+PB=-tan x.
从点P的运动过程可以看出,轨迹关于直线x=对称,且f()>f(),且轨迹非线型,故选B.
2.(2015·四川)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.
答案 24
解析 由题意得
∴e22k==,∴e11k=,
∴x=33时,y=e33k+b=(e11k)3·eb
=3·eb=×192=24.
3.(2015·上海)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.
(1)求t1与f(t1)的值;
(2)已知警员的对讲机的有效通话距离是3千米,当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.
解 (1)t1=.
记乙到C时甲所在地为D,则AD=千米.在△ACD中,CD2=AC2+AD2-2AC·ADcos A,
所以f(t1)=CD=(千米).
(2)甲到达B用时1小时;乙到达C用时小时,从A到B总用时小时.
当t1=≤t≤时,
f(t)==;
当≤t≤1时,f(t)=5-5t,
所以f(t)=
因为f(t)在上的最大值是f=,
f(t)在上的最大值是f=,
所以f(t)在上的最大值是,不超过3.
4.(2015·江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l.如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米.以l2,l1所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.
(1)求a,b的值;
(2)设公路l与曲线C相切于P点,P的横坐标为t.
①请写出公路l长度的函数解析式f(t),并写出其定义域;
②当t为何值时,公路l的长度最短?求出最短长度.
解 (1)由题意知,点M,N的坐标分别为(5,40),(20,2.5).
将其分别代入y=,
得解得
(2)①由(1)知,y=(5≤x≤20),
则点P的坐标为,
设在点P处的切线l分别交x,y轴于A,B点,
y′=-,则l的方程为y-=-(x-t),
由此得A,B.
故f(t)== ,t∈[5,20].
②设g(t)=t2+,
则g′(t)=2t-.
令g′(t)=0,解得t=10.
当t∈(5,10)时,g′(t)<0,g(t)是减函数;
当t∈(10,20)时,g′(t)>0,g(t)是增函数.
从而当t=10时,函数g(t)有极小值,也是最小值,
所以g(t)min=300,此时f(t)min=15.
答 当t=10时,公路l的长度最短,最短长度为15千米.
高考必会题型
题型一 基本函数模型的应用
例1 某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿千瓦时)与(x-0.4)(元)成反比.又当x=0.65时,y=0.8.
(1)求y与x之间的函数关系式;
(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)]
解 (1)∵y与(x-0.4)成反比,
∴设y=(k≠0).
把x=0.65,y=0.8代入上式,
得0.8=,k=0.2.
∴y==,
即y与x之间的函数关系式为y=.
(2)根据题意,得(1+)·(x-0.3)
=1×(0.8-0.3)×(1+20%).
整理,得x2-1.1x+0.3=0,解得x1=0.5,x2=0.6.
经检验x1=0.5,x2=0.6都是所列方程的根.
∵x的取值范围是0.55~0.75,
故x=0.5不符合题意,应舍去.∴x=0.6.
∴当电价调至0.6元时,本年度电力部门的收益将比上年度增加20%.
点评 解决实际应用问题的关键在于读题,读题必须细心、耐心,从中分析出数学“元素”,确定该问题涉及的数学模型,一般程序如下:
⇒⇒⇒.
变式训练1 (1)(2015·北京)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.
加油时间
加油量(升)
加油时的累计里程(千米)
2015年5月1日
12
35 000
2015年5月15日
48
35 600
注:“累计里程”指汽车从出厂开始累计行驶的路程.
在这段时间内,该车每100千米平均耗油量为( )
A.6升 B.8升 C.10升 D.12升
(2)2015年“五一”期间某商人购进一批家电,每台进价已按原价a扣去20%,他希望对货物定一新价,以便每台按新价让利25%销售后,仍可获得售价20%的纯利,则此商人经营这种家电的件数x与按新价让利总额y之间的函数关系式是______________.
答案 (1)B (2)y=x (x∈N*)
解析 (1)由表知,汽车行驶路程为35 600-35 000=600千米,耗油量为48升,∴每100千米耗油量8升.
(2)设每台新价为b,则售价b(1-25%),
让利b×25%,由于原价为a,则进价为a(1-20%),
根据题意,得每件家电利润为b×(1-25%)×20%=b×(1-25%)-a(1-20%),化简得b=a.
∴y=b×25%·x=a×25%×x=x (x∈N*),
即y=x(x∈N*).
题型二 分段函数模型的应用
例2 已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x万部并全部销售完,每万部的销售收入为R(x)万美元,且R(x)=
(1)写出年利润W(万美元)关于年产量x(万部)的函数解析式;
(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.
解 (1)当040时,
W=xR(x)-(16x+40)=--16x+7 360.
所以W=
(2)①当040时,W=--16x+7 360,
由于+16x≥2 =1 600,
当且仅当=16x,即x=50∈(40,+∞)时,取等号,
所以此时W有最大值5 760.因为6 104>5 760,
所以当x=32时,W取得最大值6 104万元.
点评 函数有关应用题的常见类型及解题关键
(1)常见类型:与函数有关的应用题,经常涉及物价、 路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.
(2)解题关键:解答这类问题的关键是确切地建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.
变式训练2 某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.
答案 9
解析 设出租车行驶x km时,付费y元,
则y=
由y=22.6,解得x=9.
高考题型精练
1.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )
A.略有盈利 B.略有亏损
C.没有盈利也没有亏损 D.无法判断盈亏情况
答案 B
解析 设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·aa)以及实数x(0
相关试卷
这是一份高考数学二轮复习知识 方法篇 专题3 函数与导数 第15练 含答案,共11页。
这是一份高考数学二轮复习知识 方法篇 专题3 函数与导数 第14练 含答案,共11页。
这是一份高考数学二轮复习知识 方法篇 专题3 函数与导数 第13练 含答案,共14页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)