2022-2023学年贵州省遵义市新蒲新区数学七下期末质量跟踪监视试题含答案
展开2022-2023学年贵州省遵义市新蒲新区数学七下期末质量跟踪监视试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知正比例函数y=(m﹣8)x的图象过第二、四象限,则m的取值范围是( )
A.m≥8 B.m>8 C.m≤8 D.m<8
2.若函数,则当函数值y=8时,自变量x的值是( )
A.± B.4 C.±或4 D.4或-
3.当a满足条件( )时,式子在实数范围内有意义.
A.a<−3 B.a≤−3 C.a>−3 D.a≥−3
4.如图,平行四边形中,平分,交于点,且,延长与的延长线交于点,连接,.下列结论:①;②是等边三角形;③;④;⑤中正确的有( )
A.1个 B.2个 C.3个 D.4个
5.矩形、菱形、正方形都具有的性质是( )
A.对角线互相垂直
B.对角线互相平分
C.对角线相等
D.每一条对角线平分一组对角
6.如图,直线经过点,则关于的不等式的解集是( )
A. B. C. D.
7.某中学规定学生的学期体育成绩满分为100,其中大课间及体育课外活动占60%,期末考试成绩古40%.小云的两项成绩(百分制)依次为84,1.小云这学期的体育成绩是( )
A.86 B.88 C.90 D.92
8.如图,四边形ABCD是长方形,AB=3,AD=1.已知A(﹣,﹣1),则点C的坐标是( )
A.(﹣3,) B.(,﹣3) C.(3,) D.(,3)
9.已知y-3与x成正比例,且x=2时,y=7,则y与x的函数关系式为( )
A.y=2x+3 B.y=2x-3 C.y-3=2x+3 D.y=3x-3
10.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )
A.16 B.16 C.8 D.8
11.一家鞋店在一段时间内销售了某种运动鞋50双,各种尺码鞋的销售量如下表所示,你认为商家更应该关注鞋子尺码的( )
尺码 | 22 | 22.5 | 23 | 23.5 | 24 | 24.5 | 25 |
销售量/双 | 4 | 6 | 6 | 20 | 4 | 5 | 5 |
A.平均数 B.中位数 C.众数 D.方差
12.某次自然灾害导致某铁路遂道被严重破坏,为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车,问原计划每天修多少米?某原计划每天修米,所列方程正确的是( )
A. B.
C. D.
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13.如图,矩形ABCD中,,,把矩形ABCD绕点A顺时针旋转,当点D落在射线CB上的点P处时,那么线段DP的长度等于_________.
14.一次函数y=kx+b(k,b是常数,k≠0)图象如图所示,则不等式kx+b>0的解集是_____.
15.如图,正方形 ABCD 的顶点 C, A 分别在 x 轴, y 轴上, BC 是菱形 BDCE 的对角线.若 BC 6, BD 5, 则点 D 的坐标是_____.
16.分解因式:___.
17.一次函数的图象与y轴的交点坐标________________.
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18.(5分)已知某市2018年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.
(1)当x≥50时,求y关于x的函数关系式;
(2)若某企业2018年10月份的水费为620元,求该企业2018年10月份的用水量.
19.(5分)如图,在平面直角坐标系中,直线与双曲线交于第一、三象限内的、两点,与轴交于点,过点作轴,垂足为,,,点的纵坐标为1.
(1)求反比例函数和一次函数的函数表达式;
(2)连接,求四边形的面积;
(3)在(1)的条件下,根据图像直接写出反比例函数的值小于一次函数的值时,自变量的取值范围.
20.(8分)丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.
(1)求出太阳花的付款金额(元)关于购买量(盆)的函数关系式;
(2)求出绣球花的付款金额(元)关于购买量(盆)的函数关系式;
(3)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?
21.(10分)已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.
(1)求证:四边形FBGH是菱形;
(2)求证:四边形ABCH是正方形.
22.(10分)计算:2×÷3﹣(﹣2.
23.(12分)如图,已知直线过点,.
(1)求直线的解析式;
(2)若直线与轴交于点,且与直线交于点.
①求的面积;
②在直线上是否存在点,使的面积是面积的2倍,如果存在,求出点的坐标;如果不存在,请说明理由.
参考答案
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1、D
2、D
3、D
4、C
5、B
6、B
7、B
8、D
9、A
10、C
11、C
12、B
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13、
14、x>-2
15、.
16、
17、 (0,-2)
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18、(1)y=6x﹣100;(2)1吨
19、(1)反比例函数解析式为;一次函数解析式为;(2)1;
(3)或.
20、(1):y1=6x;(2)y2=;(3)太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元
21、(1)见解析 (2)见解析
22、
23、(1);(2)6;(3)或
2023-2024学年贵州省遵义市新蒲新区九上数学期末学业质量监测模拟试题含答案: 这是一份2023-2024学年贵州省遵义市新蒲新区九上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了如图,一个半径为r,下列调查方式合适的是等内容,欢迎下载使用。
2023年贵州省遵义市新蒲新区中考数学三模试卷(含解析): 这是一份2023年贵州省遵义市新蒲新区中考数学三模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年贵州省遵义市新蒲新区中考数学毕业认定试卷(含解析): 这是一份2023年贵州省遵义市新蒲新区中考数学毕业认定试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。