2022-2023学年安徽省名校数学七年级第二学期期末复习检测试题含答案
展开2022-2023学年安徽省名校数学七年级第二学期期末复习检测试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.某校八年级(3)班体训队员的身高(单位:cm)如下:169,165,166,164,169,167,166,169,166,165,获得这组数据方法是( )
A.直接观察 B.查阅文献资料 C.互联网查询 D.测量
2.在平面直角坐标系中,点M(﹣2,1)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.如图,在平面直角坐标系中,已知矩形OABC,点O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,OA=4,OC=6,点E为OC的中点,将△OAE沿AE翻折,使点O落在点O′处,作直线CO',则直线CO'的解析式为( )
A.y=﹣x+6 B.y=﹣x+8 C.y=﹣x+10 D.y=﹣x+8
4.如图,菱形中,,点是边上一点,占在上,下列选项中不正确的是( )
A.若,则
B.若, 则
C.若,则的周长最小值为
D.若,则
5.如图,▱ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是( )
A.18 B.10 C.9 D.8
6.若菱形ABCD的两条对角线长分别为6和8,则此菱形的面积为( )
A.5 B.12 C.24 D.48
7.如图,在平面直角坐标系中,等边△OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为( )
A.(4,2) B.(3,3) C.(4,3) D.(3,2)
8.对于实数,我们规定表示不大于的最大整数,例如,,,若,则的取值可以是( )
A. B. C. D.
9.一张矩形纸片ABCD,已知AB=3,AD=2,小明按所给图步骤折叠纸片,则线段DG长为( )
A.2 B. C.2 D.1
10.若y=(m﹣2)x+(m2﹣4)是正比例函数,则m的取值是( )
A.2 B.﹣2 C.±2 D.任意实数
二、填空题(本大题共有6小题,每小题3分,共18分)
11.要从甲、乙、丙三名学生中选出一名学生参加数学竟赛。对这三名学生进行了10次“数学测试”,经过数据分析,3人的平均成绩均为92分。甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是_____________.
12.一个三角形的底边长为5,高为h可以任意伸缩.写出面积S随h变化的函数解析式_____.
13.如图,矩形ABCD的对角线AC与BD交于点0,过点O作BD的垂线分别交AD、BC于E.F两点,若AC =2,∠DAO =300,则FB的长度为________ .
14.如图,在梯形ABCD中,AD∥BC,E为BC上一点,DE∥AB,AD的长为1,BC的长为2,则CE的长为 .
15.当x_____时,分式有意义.
16.在直角坐标系中,直线与y轴交于点,按如图方式作正方形、、,、、在直线上,点、、在x轴上,图中阴影部分三角形的面积从左到右依次记为、、、,则的值为______用含n的代数式表示,n为正整数.
三、解下列各题(本大题共8小题,共72分)
17.(8分)已知一次函数与反比例函数的图象交于点P(3,m),Q(1,3).
(1)求反函数的函数关系式;
(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;
(3)当x为何值时,一次函数的值大于反比例函数的值?
18.(8分)如图,在边长为的正方形ABCD中,作∠ACD的平分线交AD于F,过F作直线AC的垂线交AC于P,交CD的延长线于Q,又过P作AD的平行线与直线CF交于点E,连接DE,AE,PD,PB.
(1)求AC,DQ的长;
(2)四边形DFPE是菱形吗?为什么?
(3)探究线段DQ,DP,EF之间的数量关系,并证明探究结论;
(4)探究线段PB与AE之间的数量关系与位置关系,并证明探究结论.
19.(8分)某风景区计划在绿化区域种植银杏树,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:
甲 | 乙 | ||
购树苗数量 | 销售单价 | 购树苗数量 | 销售单价 |
不超过500棵时 | 800元/棵 | 不超过1000棵时 | 800元/棵 |
超过500棵的部分 | 700元/棵 | 超过1000棵的部分 | 600元/棵 |
设购买银杏树苗x棵,到两家购买所需费用分别为y甲元、y乙元
(1)该风景区需要购买800棵银杏树苗,若都在甲家购买所要费用为 元,若都在乙家购买所需费用为 元;
(2)当x>1000时,分别求出y甲、y乙与x之间的函数关系式;
(3)如果你是该风景区的负责人,购买树苗时有什么方案,为什么?
20.(8分)甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图像如图所示。
(1)请根据图像回答下列问题:甲先出发 小时后,乙才出发;在甲出发 小时后两人相遇,这时他们距A地 千米;
(2)乙的行驶速度 千米/小时;
(3)分别求出甲、乙在行驶过程中的路程(千米)与时间(小时)之间的函数关系式(不要求写出自变量的取值范围)。
21.(8分)第二十四届冬季奥林匹克运动会将于2022年在北京市和张家口市举行.为了调查学生对冬奥知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.
a.甲校20名学生成绩的频数分布表和频数分布直方图如下:
b.甲校成绩在的这一组的具体成绩是:
87 88 88 88 89 89 89 89
c.甲、乙两校成绩的平均分、中位数、众数、方差如下:
根据以上图表提供的信息,解答下列问题:
(1)表1中a = ;表2中的中位数n = ;
(2)补全图1甲校学生样本成绩频数分布直方图;
(3)在此次测试中,某学生的成绩是87分,在他所属学校排在前10名,由表中数据可知该学生是 校的学生(填“甲”或“乙”),理由是 ;
(4)假设甲校200名学生都参加此次测试,若成绩80分及以上为优秀,估计成绩优秀的学生人数为__________.
22.(10分)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(结果保留根号)
23.(10分)如图,在中,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.
(1)求证:AE=CF
(2)若AB=9,AC=16,AE=4,BF=,求四边形ABCD的面积.
24.(12分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.
(1)求证:△ADE≌△CBF;
(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、D
4、D
5、C
6、C
7、A
8、B
9、B
10、B
二、填空题(本大题共有6小题,每小题3分,共18分)
11、丙
12、
13、2
14、1
15、≠.
16、
三、解下列各题(本大题共8小题,共72分)
17、(1);(2)见解析;(3)或
18、(1)AC=,QD=;(2)是菱形,理由见解析;(3)DP2+ EF2=4QD2,理由见解析;(4)垂直且相等,理由见解析.
19、 (1)610000; 1;(2)当x>1000时,y甲=700x+50000,y乙=600x+200000,x为正整数;(3)当0≤x≤500时或x=1500时,到两家购买所需费用一样;当500<x<1500时,到甲家购买合算;当x>1500时,到乙家购买合算.
20、(1)3,4,40 (2)40 (3)y=40x-120
21、(1)1,88.5;(2)见解析;(3)乙,乙的中位数是85,87>85;(4)140
22、直线L上距离D点400米的C处开挖.
23、(1)见解析;(2)
24、(1)证明见解析;(2)若∠ADB是直角,则四边形BEDF是菱形,理由见解析.
江西省新余市名校2022-2023学年数学七年级第二学期期末复习检测模拟试题含答案: 这是一份江西省新余市名校2022-2023学年数学七年级第二学期期末复习检测模拟试题含答案,共7页。
安徽省宣城市名校2022-2023学年七年级数学第二学期期末检测模拟试题含答案: 这是一份安徽省宣城市名校2022-2023学年七年级数学第二学期期末检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
安徽省桐城市2022-2023学年数学七年级第二学期期末复习检测模拟试题含答案: 这是一份安徽省桐城市2022-2023学年数学七年级第二学期期末复习检测模拟试题含答案,共7页。