- 中考数学真题汇编第1期03 分式、二次根式 试卷 3 次下载
- 中考数学真题汇编第1期04 一次方程(组)、一次不等式 试卷 2 次下载
- 中考数学真题汇编第1期06 一次函数与反比例函数 试卷 4 次下载
- 中考数学真题汇编第1期07 二次函数 试卷 6 次下载
- 中考数学真题汇编第1期08 三角形 试卷 5 次下载
中考数学真题汇编第1期05 二次方程、分式方程、无理方程
展开
数学
中考数学真题汇编第1期
专题05 二次方程、分式方程、无理方程
一、单选题
1.(2023·河南·统考中考真题)若关于的一元二次方程有两个不相等的实数根,则的值可以是( )
A. B. C.0 D.
2.(2023·湖南永州·统考中考真题)某县年人均可支配收入为万元,年达到万元,若年至年间每年人均可支配收入的增长率都为,则下面所列方程正确的是( )
A. B.
C. D.
3.(2023·四川乐山·统考中考真题)若关于x的一元二次方程两根为,且,则m的值为( )
A.4 B.8 C.12 D.16
4.(2023·四川泸州·统考中考真题)关于的一元二次方程的根的情况是( )
A.没有实数根 B.有两个相等的实数根
C.有两个不相等的实数根 D.实数根的个数与实数的取值有关
5.(2023·天津·统考中考真题)如图,要围一个矩形菜园,共中一边是墙,且的长不能超过,其余的三边用篱笆,且这三边的和为.有下列结论:
①的长可以为;
②的长有两个不同的值满足菜园面积为;
③菜园面积的最大值为.
其中,正确结论的个数是( )
A.0 B.1 C.2 D.3
6.(2023·天津·统考中考真题)若是方程的两个根,则( )
A. B. C. D.
7.(2023·四川眉山·统考中考真题)关于x的一元二次方程有两个不相等的实数根,则m的取值范围是( )
A. B. C. D.
8.(2023·上海·统考中考真题)在分式方程中,设,可得到关于y的整式方程为( )
A. B. C. D.
9.(2023·新疆·统考中考真题)用配方法解一元二次方程,配方后得到的方程是( )
A. B. C. D.
10.(2023·四川泸州·统考中考真题)若一个菱形的两条对角线长分别是关于的一元二次方程的两个实数根,且其面积为11,则该菱形的边长为( )
A. B. C. D.
11.(2023·四川凉山·统考中考真题)分式的值为0,则的值是( )
A.0 B. C.1 D.0或1
12.(2023·四川内江·统考中考真题)对于实数a,b定义运算“⊗”为,例如,则关于x的方程的根的情况,下列说法正确的是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.无实数根 D.无法确定
13.(2023·湖南郴州·统考中考真题)小王从A地开车去B地,两地相距240km.原计划平均速度为km/h,实际平均速度提高了50%,结果提前1小时到达.由此可建立方程为( )
A. B. C. D.
14.(2023·湖北宜昌·统考中考真题)某校学生去距离学校的博物馆参观,一部分学生骑自行车先走,过了后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,汽车的速度是( ).
A. B. C. D.
15.(2023·四川内江·统考中考真题)用计算机处理数据,为了防止数据输入出错,某研究室安排两名程序操作员各输入一遍,比较两人的输入是否一致,本次操作需输入2640个数据,已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.这两名操作员每分钟各能输入多少个数据?设乙每分钟能输入x个数据,根据题意得方程正确的是( )
A. B.
C. D.
二、填空题
16.(2023·四川眉山·统考中考真题)已知方程的根为,则的值为____________.
17.(2023·上海·统考中考真题)已知关于x的一元二次方程没有实数根,那么a的取值范围是________.
18.(2023·四川达州·统考中考真题)已知是方程的两个实数根,且,则的值为___________.
19.(2023·江苏连云港·统考中考真题)若关于的一元二次方程有两个不相等的实数根,则的取值范围是_________.
20.(2023·湖北随州·统考中考真题)已知一元二次方程x2﹣3x+1=0有两个实数根x1,x2,则x1+x2﹣x1x2的值等于_____.
21.(2023·江苏扬州·统考中考真题)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是______.
22.(2023·湖南永州·统考中考真题)若关于x的分式方程(m为常数)有增根,则增根是_______.
23.(2023·浙江台州·统考中考真题)3月12日植树节期间,某校环保小卫士组织植树活动.第一组植树12棵;第二组比第一组多6人,植树36棵;结果两组平均每人植树的棵数相等,则第一组有________人.
24.(2023·江苏苏州·统考中考真题)分式方程的解为________________.
25.(2023·浙江绍兴·统考中考真题)方程的解是________.
26.(2023·四川眉山·统考中考真题)关于x的方程的解为非负数,则m的取值范围是____________.
27.(2023·四川·统考中考真题)关于x的分式方程有增根,则___________.
三、解答题
28.(2023·四川凉山·统考中考真题)解方程:.
29.(2023·四川南充·统考中考真题)已知关于x的一元二次方程
(1)求证:无论m为何值,方程总有实数根;
(2)若,是方程的两个实数根,且,求m的值.
30.(2023·湖北宜昌·统考中考真题)为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.
(1)求豆沙粽和肉粽的单价;
(2)超市为了促销,购买粽子达20个及以上时实行优惠,下表列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);
豆沙粽数量
肉粽数量
付款金额
小欢妈妈
20
30
270
小乐妈妈
30
20
230
①根据上表,求豆沙粽和肉粽优惠后的单价;
②为进一步提升粽子的销量,超市将两种粽子打包成A,B两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A,B两种包装中分别有m个豆沙粽,m个肉粽,A包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A,B两种包装的销量分别为包,包,A,B两种包装的销售总额为17280元.求m的值.
31.(2023·湖北黄冈·统考中考真题)加强劳动教育,落实五育并举.孝礼中学在当地政府的支持下,建成了一处劳动实践基地.2023年计划将其中的土地全部种植甲乙两种蔬菜.经调查发现:甲种蔬菜种植成本y(单位;元/)与其种植面积x(单位:)的函数关系如图所示,其中;乙种蔬菜的种植成本为50元/.
(1)当___________时,元/;
(2)设2023年甲乙两种蔬菜总种植成本为W元,如何分配两种蔬菜的种植面积,使W最小?
(3)学校计划今后每年在这土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐年下降,若甲种蔬菜种植成本平均每年下降,乙种蔬菜种植成本平均每年下降,当a为何值时,2025年的总种植成本为元?
32.(2023·山东临沂·统考中考真题)综合与实践
问题情境
小莹妈妈的花卉超市以15元/盆的价格新购进了某种盆栽花卉,为了确定售价,小莹帮妈妈调查了附近A,B,C,D,E五家花卉店近期该种盆栽花卉的售价与日销售量情况,记录如下:
售价(元/盆)
日销售量(盆)
A
20
50
B
30
30
C
18
54
D
22
46
E
26
38
数据整理
(1)请将以上调查数据按照一定顺序重新整理,填写在下表中:
售价(元/盆)
日销售量(盆)
模型建立
(2)分析数据的变化规律,找出日销售量与售价间的关系;
拓广应用
(3)根据以上信息,小莹妈妈在销售该种花卉中,
①要想每天获得400元的利润,应如何定价?
②售价定为多少时,每天能够获得最大利润?
33.(2023·江苏扬州·统考中考真题)甲、乙两名学生到离校的“人民公园”参加志愿者活动,甲同学步行,乙同学骑自行车,骑自行车速度是步行速度的4倍,甲出发后乙同学出发,两名同学同时到达,求乙同学骑自行车的速度.
参考答案
1.C
2.B
3.C
4.C
5.C
6.A
7.D
8.D
9.D
10.C
11.A
12.A
13.B
14.B
15.D
16.6
17.
18.7
19.
20.2
21.k<1.
22.
23.3
24.
25.
26.且
27.
28.解:
方程两边同乘,
得,
整理得,,
∴,
解得:,,
检验:当时,,是增根,
当时,,
原方程的解为.
29.(1)证明:关于的一元二次方程,
∴,,,
∴,
∵,即,
∴不论为何值,方程总有实数根;
(2)解:∵,是关于x的一元二次方程的两个实数根,
∴,,
∵,
∴,
∴,整理,得,解得,,
∴m的值为或.
30.(1)解:设豆沙粽的单价为x元,则肉粽的单价为元,
依题意得,
解得;
则;
所以豆沙粽的单价为4元,肉粽的单价为8元;
(2)解:①设豆沙粽优惠后的单价为a元,则肉粽优惠后的单价为b元,
依题意得,解得,
所以豆沙粽优惠后的单价为3元,肉粽优惠后的单价为7元;
②依题意得,
解得或,
,
∴,
.
31.(1)解:当时,设甲种蔬菜种植成本y(单位;元/)与其种植面积x(单位:)的函数关系式为,把点代入得,
,
解得,
∴当时,,
当时,,
∴当时,,解得,
即当时,元/;
故答案为:;
(2)解:当时,,
∵,
∴抛物线开口向上,
∴当时,有最小值,最小值为,
当时,,
∵,
∴随着x的增大而减小,
∴当时,有最小值,最小值为,
综上可知,当甲种蔬菜的种植面积为,乙种蔬菜的种植面积为时,W最小;
(3)由题意可得,
解得(不合题意,舍去),
∴当a为时,2025年的总种植成本为元.
32.(1)解:按照售价从低到高排列列出表格如下:
售价(元/盆)
18
20
22
26
30
日销售量(盆)
54
50
46
38
30
(2)由表格可知,售价每涨价2元,日销售量少卖4盆;
(3)①设:定价应为元,由题意,得:
,
整理得:,
解得:,
∴定价为每盆元或每盆元时,每天获得400元的利润;
②设每天的利润为,由题意,得:
,
∴,
∵,
∴当时,有最大值为元.
答:售价定为元时,每天能够获得最大利润.
33.解:设甲同学步行的速度为,则乙同学骑自行车速度为,
,由题意得,
,
解得,
经检验,是分式方程的解,也符合实际.
,
答:乙同学骑自行车的速度为.
中考数学真题汇编第2期05 二次方程、分式方程: 这是一份中考数学真题汇编第2期05 二次方程、分式方程,共14页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
(2020-2022)中考数学真题分类汇编专题05 一元二次方程(教师版): 这是一份(2020-2022)中考数学真题分类汇编专题05 一元二次方程(教师版),共63页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2022年中考数学真题分类汇编:05 分式: 这是一份2022年中考数学真题分类汇编:05 分式,共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。