- 中考数学真题汇编第1期02 整式、因式分解 试卷 2 次下载
- 中考数学真题汇编第1期03 分式、二次根式 试卷 3 次下载
- 中考数学真题汇编第1期05 二次方程、分式方程、无理方程 试卷 2 次下载
- 中考数学真题汇编第1期06 一次函数与反比例函数 试卷 4 次下载
- 中考数学真题汇编第1期07 二次函数 试卷 6 次下载
中考数学真题汇编第1期04 一次方程(组)、一次不等式
展开
数学
中考数学真题汇编第1期
专题04 一次方程(组)、一次不等式
一、单选题
1.(2023·湖南永州·统考中考真题)关于x的一元一次方程的解为,则m的值为( )
A.3 B. C.7 D.
2.(2023·江苏连云港·统考中考真题)元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,鸡马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行里,慢马每天行里,驽马先行天,快马几天可追上慢马?若设快马天可追上慢马,由题意得( )
A. B.
C. D.
3.(2023·四川南充·统考中考真题)《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”(尺、寸是长度单位,1尺=10寸).意思是,现有一根长木,不知道其长短.用一根绳子去度量长木,绳子还剩余4.5尺;将绳子对折再度量长木,长木还剩余1尺.问长木长多少?设长木长为x尺,则可列方程为( )
A. B.
C. D.
4.(2023·四川成都·统考中考真题)《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长尺,则可列方程为( )
A. B.
C. D.
5.(2023·山东枣庄·统考中考真题)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是( )
A. B.
C. D.
6.(2023·湖南·统考中考真题)《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设有x只鸡,y只兔.依题意,可列方程组为( )
A. B.
C. D.
7.(2023·浙江绍兴·统考中考真题)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容是单位);大容器1个,小容器5个,总容暴为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为斛,小容器的容量为斛,则可列方程组是( )
A. B. C. D.
8.(2023·四川眉山·统考中考真题)已知关于的二元一次方程组的解满足,则m的值为( )
A.0 B.1 C.2 D.3
9.(2023·浙江温州·统考中考真题)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.
【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟.小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.
【问题】路线①③⑥⑦⑧各路段路程之和为( )
A.4200米 B.4800米 C.5200米 D.5400米
10.(2023·浙江宁波·统考中考真题)茶叶作为浙江省农业十大主导产业之一,是助力乡村振兴的民生产业.某村有土地60公顷,计划将其中的土地种植蔬菜,其余的土地开辟为茶园和种植粮食,己知茶园的面积比种粮食面积的2倍少3公顷,问茶园和种粮食的面积各多少公顷?设茶园的面积为x公顷,种粮食的面积为y公顷,可列方程组为( )
A. B. C. D.
11.(2023·河南·统考中考真题)把不等式组的解集表示在数轴上,下列选项正确的是( )
A. B.
C. D.
12.(2023·湖北黄冈·统考中考真题)不等式的解集为( )
A. B. C. D.无解
二、填空题
13.(2023·浙江·统考中考真题)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝斤,干燥后耗损斤两(古代中国斤等于两).今有干丝斤,问原有生丝多少?”则原有生丝为__________斤.
14.(2023·湖南怀化·统考中考真题)定义新运算:,其中,,,为实数.例如:.如果,那么__________.
15.(2023·四川南充·统考中考真题)小伟用撬棍撬动一块大石头,已知阻力和阻力臂分别为1000N和0.6m,当动力臂由1.5m增加到2m时,撬动这块石头可以节省________N的力.(杜杆原理:阻力阻力臂动力动力臂)
三、解答题
16.(2023·浙江台州·统考中考真题)解方程组:
17.(2023·江苏连云港·统考中考真题)解方程组
18.(2023·四川乐山·统考中考真题)解二元一次方程组:
19.(2023·河北·统考中考真题)某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:
投中位置
A区
B区
脱靶
一次计分(分)
3
1
在第一局中,珍珍投中A区4次,B区2次,脱靶4次.
(1)求珍珍第一局的得分;
(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.
20.(2023·四川自贡·统考中考真题)某校组织七年级学生到江姐故里研学旅行,租用同型号客车4辆,还剩30人没有座位;租用5辆,还空10个座位.求该客车的载客量.
21.(2023·山东临沂·统考中考真题)大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M型平板电脑一台和1500元现金,当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.
(1)这台M型平板电脑价值多少元?
(2)小敏若工作m天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m的代数式表示)?
22.(2023·云南·统考中考真题)蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买两种型号的帐篷.若购买种型号帐篷2顶和种型号帐篷4顶,则需5200元;若购买种型号帐篷3顶和种型号帐篷1顶,则需2800元.
(1)求每顶种型号帐篷和每顶种型号帐篷的价格;
(2)若该景区需要购买两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买种型号帐篷数量不超过购买种型号帐篷数量的,为使购买帐篷的总费用最低,应购买种型号帐篷和种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?
23.(2023·湖北武汉·统考中考真题)解不等式组请按下列步骤完成解答.
(1)解不等式①,得________;
(2)解不等式②,得________;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集是________.
24.(2023·四川遂宁·统考中考真题)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.某超市为了满足人们的需求,计划在端午节前购进甲、乙两种粽子进行销售,经了解.每个乙种粽子的进价比每个甲种粽子的进价多2元,用1000元购进甲种粽子的个数与用1200元购进乙种粽子的个数相同.
(1)甲、乙两种粽子每个的进价分别是多少元?
(2)该超市计划购进这两种粽子共200个(两种都有),其中甲种粽子的个数不低于乙种粽子个数的2倍,若甲、乙两种粽子的售价分别为12元/个、15元/个,设购进甲种粽子m个,两种粽子全部售完时获得的利润为w元.
①求w与m的函数关系式,并求出m的取值范围;
②超市应如何进货才能获得最大利润,最大利润是多少元?
25.(2023·天津·统考中考真题)解不等式组
请结合题意填空,完成本题的解答.
(1)解不等式①,得________________;
(2)解不等式②,得________________;
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式组的解集为________________.
26.(2023·新疆·统考中考真题)随着端午节的临近,,两家超市开展促销活动,各自推出不同的购物优惠方案,如下表:
超市
超市
优惠方案
所有商品按八折出售
购物金额每满元返元
(1)当购物金额为元时,选择超市______(填“”或“”)更省钱;
当购物金额为元时,选择超市______(填“”或“”)更省钱;
(2)若购物金额为()元时,请分别写出它们的实付金额(元)与购物金额(元)之间的函数解析式,并说明促销期间如何选择这两家超市去购物更省钱?
(3)对于超市的优惠方案,随着购物金额的增大,顾客享受的优惠率不变,均为%(注:).若在超市购物,购物金额越大,享受的优惠率一定越大吗?请举例说明.
参考答案
1.A
2.D
3.A
4.A
5.D
6.C
7.B
8.B
9.B
10.B
11.A
12.C
13.
14.1
15.100
16.解:
①+②,得.
∴.
把代入①,得.
∴这个方程组的解是.
17.解:
①+②得,
解得,
将代入①得,
解得.
∴原方程组的解为
18.解:①,得②,
将②+③,得,
解得.
将代入①,
得,
∴方程组的解为:.
19.(1)解:由题意得(分),
答:珍珍第一局的得分为6分;
(2)解:由题意得,
解得:.
20.解:设该客车的载客量为人,
由题意知,,
解得,,
∴该客车的载客量为40人.
21.(1)解:设这台M型平板电脑的价值为元,由题意,得:
,
解得:;
∴这台M型平板电脑的价值为元;
(2)解:由题意,得:;
答:她应获得元的报酬.
22.(1)解:设每顶种型号帐篷的价格为元,每顶种型号帐篷的价格为元.
根据题意列方程组为:,
解得,
答:每顶种型号帐篷的价格为600元,每顶种型号帐篷的价格为1000元.
(2)解:设种型号帐篷购买顶,总费用为元,则种型号帐篷为顶,
由题意得,
其中,得,
故当种型号帐篷为5顶时,总费用最低,总费用为,
答:当种型号帐篷为5顶时,种型号帐篷为15顶时,总费用最低,为18000元.
23.(1)解:,
.
故答案为:.
(2)解:,
.
故答案为:.
(3)解:把不等式和的解集在数轴上表示出来:
(4)解:由图可知原不等式组的解集是.
故答案为:.
24.(1)解:设甲粽子每个的进价为x元,则乙粽子每个的进价为元,
由题意得:,
解得:,
经检验:是原方程的解,且符合题意,
则,
答:甲粽子每个的进价为10元,则乙粽子每个的进价为12元;
(2)解:①设购进甲粽子m个,则乙粽子个,利润为w元,
由题意得:,
∵甲种粽子的个数不低于乙种粽子个数的2倍,
∴,
解得:,
∴w与m的函数关系式为;
②∵,则w随m的增大而减小,,即m的最小整数为134,
∴当时,w最大,最大值,
则,
答:购进甲粽子134个,乙粽子66个才能获得最大利润,最大利润为466元.
25.(1)解不等式①,得,
故答案为:;
(2)解不等式②,得,
故答案为:;
(3)解:把不等式①和②的解集在数轴上表示出来:
(4)解:原不等式组的解集为,
故答案为:.
26.(1)解:购物金额为元时,超市费用为(元)
超市费用为80元,
∵,
∴当购物金额为80元时,选择超市更省钱;
购物金额为元时,超市费用为(元)
超市费用为元
∵,
∴当购物金额为130元时,选择超市更省钱;
故答案为:,.
(2)解:依题意,,
当时,超市没有优惠,故选择超市更省钱,
当时,
解得:
∴当时,选择超市更省钱,
综上所述,或时选择超市更省钱,
当时,选择超市更省钱,
当时,两家一样,
综上所述,当或时选择超市更省钱,当时,选择超市更省钱;
(3)在超市购物,购物金额越大,享受的优惠率不一定越大,
例如:当超市购物元,返元,相当于打折,即优惠率为,
当超市购物元,返元,则优惠率为,
∴在超市购物,购物金额越大,享受的优惠率不一定越大.
专题04一次方程与方程组三年(2021-2023)中考数学真题分项汇编: 这是一份专题04一次方程与方程组三年(2021-2023)中考数学真题分项汇编,共52页。
专题04一次方程与方程组三年(2021-2023)中考数学真题分项汇编: 这是一份专题04一次方程与方程组三年(2021-2023)中考数学真题分项汇编,共52页。
2020年中考数学真题分项汇编专题04一次方程(组)及应用 (含解析): 这是一份2020年中考数学真题分项汇编专题04一次方程(组)及应用 (含解析),共18页。